N-Channel POWERTRENCH® MOSFET 30 V, 16.5 A, 14 m Ω

This N-Channel MOSFET is a rugged gate version of ON Semiconductor's advanced PowerTrench process. It has been optimized for power management applications.

Features

- $R_{DS(on)} = 14 \text{ m}\Omega \text{ (Max.)} @ V_{GS} = 10 \text{ V}, I_D = 9.6 \text{ A}$
- $R_{DS(on)} = 17 \text{ m}\Omega \text{ (Max.)} @ V_{GS} = 4.5 \text{ V}, I_D = 8.7 \text{ A}$
- Low Profile 0.8 mm Max in MLP 3.3 x 3.3
- These Devices are Pb-Free and are RoHS Compliant

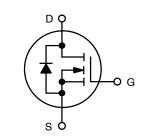
Application

• DC - DC Conversion

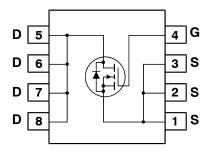
MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted)

Parameter		Symbol	Value	Unit
Drain-to-Source Voltage		V _{DS}	30	V
Gate-to-Source Voltage		V _{GS}	±20	V
Continuous Drain Current	T _C = 25°C (Package limited)	I _D	16.5	Α
	T _C = 25°C (Silicon limited)		38	
	T _A = 25°C (Figure 1)		9.6	
Drain Current	Pulsed	I _D	60	Α
Power Dissipation	T _C = 25°C	P_{D}	31	W
	T _A = 25°C (Figure 1)		2.1	
Operating and Storage Junction Temperature Range		T _J , T _{STG}	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


THERMAL CHARACTERISTICS

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	4	°C/W
Thermal Resistance, Junction-to-Ambient (Figure 1)	$R_{\theta JA}$	60	


ON Semiconductor®

www.onsemi.com

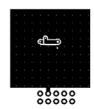
WDFN8 CASE 511DH

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 1 of this data sheet.

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Mark	Package	Reel Size	Tape Width	Quantity
FDMC8878	FDMC8878	MLP 3.3 x 3.3	13″	12 mm	3000 units


ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
OFF CHARA	CTERISTICS					
BV _{DSS}	Drain-to-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	30	_	-	V
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C	-	20	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V	-	_	1	μΑ
		V _{DS} = 24 V, V _{GS} = 0 V, T _J = 125°C	-	-	100	1
I _{GSS}	Gate-to-Source Leakage Current	V _{GS} = ±20 V, V _{DS} = 0 V	-	_	±100	nA
ON CHARAC	TERISTICS					
V _{GS(th)}	Gate-to-Source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = V_{DS}$	1	1.7	3	V
$\Delta BV_{DSS}/\Delta T_{J}$	Gate-to-Source Threshold Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C	-	-5.7	-	mV/°C
R _{DS(on)}	Drain-to-Source On Resistance	V _{GS} = 10 V, I _D = 9.6 A	-	9.6	14.0	mΩ
		V _{GS} = 4.5 V, I _D = 8.7 A	-	12.1	17.0	1
		V _{GS} = 10 V, I _D = 9.6 A, T _J = 125°C	-	13.5	20.0	1
9FS	Forward Transconductance	V _{DS} = 5 V, I _D = 9.6 A	-	35	-	S
DYNAMIC CI	HARACTERISTICS					
C _{iss}	Input Capacitance	V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz	-	1000	1230	pF
C _{oss}	Output Capacitance		-	183	255	pF
C _{rss}	Reverse Transfer Capacitance		-	118	180	pF
Rg	Reverse Transfer Capacitance	f = 1 MHz	-	1.1	-	Ω
SWITCHING	CHARACTERISTICS					
t _{d(on)}	Turn-On Delay Time	V _{DD} = 15 V, I _D = 9.6 A,	-	8	16	ns
t _r	Rise Time	V_{GS} = 10 V, R_{GEN} = 6 Ω	-	4	10	1
t _{d(off)}	Turn-Off Delay Time		-	20	36	1
t _f	Fall Time		-	3	10	1
Q _{g(tot)}	Total Gate Charge	$V_{GS} = 10 \text{ V}, V_{DD} = 15 \text{ V},$ $I_D = 9.6 \text{ A}$	-	18	26	nC
Q _{gs}	Gate-to-Source Gate Charge		-	2.8	-	1
Q_{gd}	Gate-to-Drain "Miller" Charge		-	3.9	-	1
DRAIN-SOU	RCE DIODE CHARACTERISTICS					
V _{SD}	Source-to-Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 9.6 A (Note 2)	-	0.8	1.2	V
t _{rr}	Reverse Recovery Time	I _F = 9.6 A,	-	23	35	ns
		di/dt = 100 A/μs	——			

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product

performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. R_{θ,JA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR–4 material. R_{θ,JC} is guaranteed by design while R_{θ,CA} is determined by the user's board design.

a. 60°C/W when mounted on a 1 in² pad of 2 oz copper

b. 135°C/W when mounted on a minimum pad of 2 oz copper

Figure 1.

Figure 2.

2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

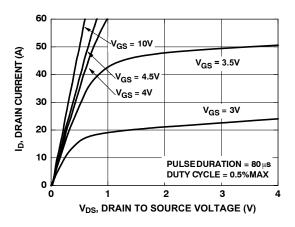


Figure 3. Gate Charge Characteristics

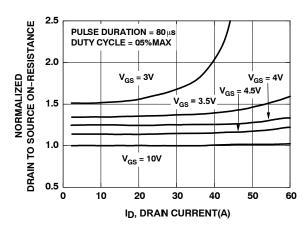


Figure 4. Capacitance vs. Drain to Source Voltage

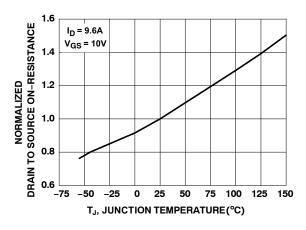


Figure 5. Unclamped Inductive Switching Capability

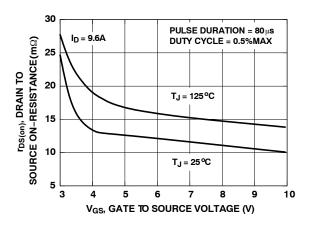


Figure 6. Maximum Continuous Drain Current vs. Ambient Temperature

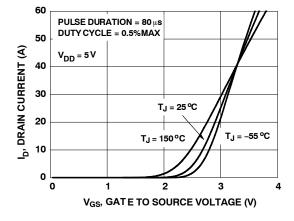


Figure 7. Forward Bias Safe Operating Area

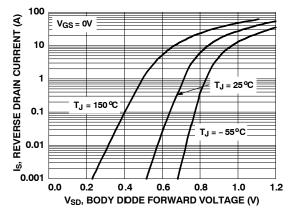


Figure 8. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

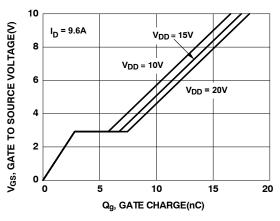


Figure 9. On-Region Characteristics

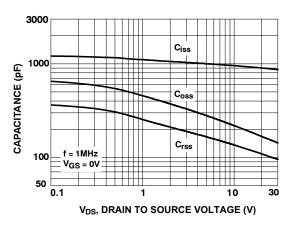


Figure 10. Transfer Characteristics

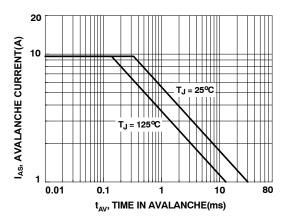


Figure 11. On–Resistance Variation vs. Drain Current and Gate Voltage

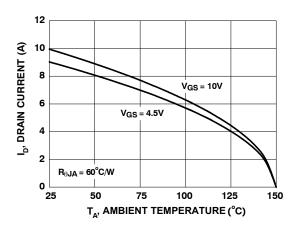


Figure 12. Body Diode Forward Voltage Variation vs. Source Current and Temperature

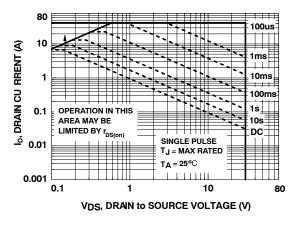


Figure 13. Capacitance Characteristics

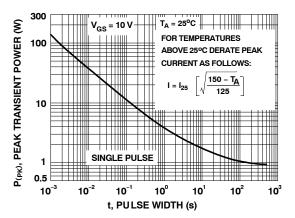
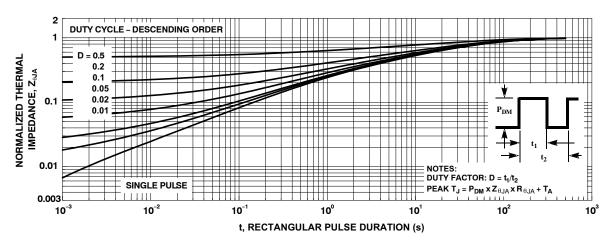
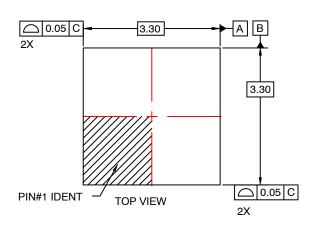
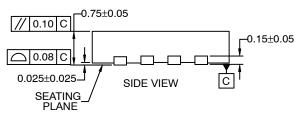
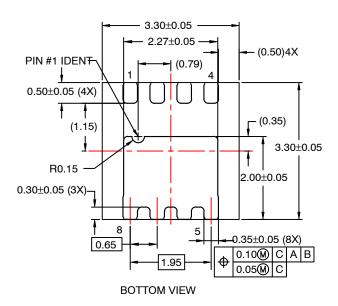
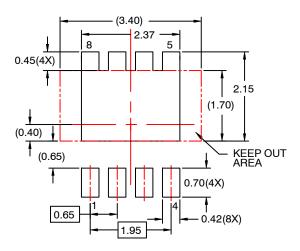


Figure 14. Gate Charge Characteristics

TYPICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)


Figure 15. Transient Thermal Response Curve


WDFN8 3.3x3.3, 0.65P CASE 511DH ISSUE O

DATE 31 JUL 2016

RECOMMENDED LAND PATTERN

NOTES:

- A. DOES NOT CONFORM TO JEDEC REGISTRATION MO-229
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.
- D. LAND PATTERN RECOMMENDATION IS EXISTING INDUSTRY LAND PATTERN.

DOCUMENT NUMBER:	98AON13625G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	WDFN8 3.3X3.3, 0.65P	•	PAGE 1 OF 1	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative