

STTH110

1000 V - 1 A high efficiency ultrafast diode

Features

•

•

- Low forwarded voltage drop
- High reliability
- High surge current capability
- · Soft switching for reduced EMI disturbances
- Planar technology
- ECOPACK2 compliant

Applications

- Switching diode
- Auxiliary power supply

Description

The STTH110, which is using ST ultrafast high voltage planar technology, is especially suited for free-wheeling, clamping, snubbering, demagnetization in power supplies and other power switching applications.

Product status					
STT	H110				
Product summary					
Symbol Value					
I _{F(AV)}	1 A				
V _{RRM}	1000 V				
Т _{j(max.)} 175 °С					
V _{F(typ.)}	1.42 V				

1 Characteristics

51

Table 1. Absolute ratings (limiting values at 25 °C, unless otherwise specified)

Symbol	Parameter	Value	Unit		
V _{RRM}	Repetitive peak reverse voltage	1000	V		
V _{RMS}	Voltage rms	700	V		
	$I_{F(AV)}$ Average forward current δ = 0.5, square wave	SMA	T _L = 125 °C	- 1	•
IF(AV)		DO-41	T _L = 100 °C		A
1	SMA				^
IFSM	Surge non repetitive forward current $DO-41$ $t_p = 8.3$ ms sinusoidal			20	A
T _{stg}	Storage temperature range	-50 to +175	°C		
Тj	Maximum operating junction temperature	+175	°C		

Table 2. Thermal resistance parameter

Symbol		Max. value	Unit		
P	Junction to lead		SMA	30	
R _{th(j-l)}	Junction to lead	Lood longth = 10 mm	DO 44	45	°C/W
R _{th(j-a)}	Junction to ambient	Lead length = 10 mm	DO-41	110	

For more information, please refer to the following application note :

AN5088 : Rectifiers thermal management, handling and mounting recommendations

Table 3. Static electrical characteristics

Symbol	Parameter	Test conditions	Test conditions		Тур.	Max.	Unit
I_ (1)	IR ⁽¹⁾ Reverse leakage current	T _j = 25 °C	- V _R = 1000 V	-		10	μA
IR ⁽¹⁾		T _j = 125 °C		-		50	
V/_(2)	V _F ⁽²⁾ Forward voltage drop	T _j = 25 °C	I _F = 1 A	-		1.7	V
VF ⁽²⁾		T _j = 150 °C		-	0.98	1.42	v

1. Pulse test: $t_p = 5 ms, \, \delta < 2\%$

2. Pulse test: $t_p = 380 \ \mu s, \ \delta < 2\%$

To evaluate the conduction losses, use the following equation:

 $P = 1.20 \text{ x } I_{F(AV)} + 0.225 \text{ x } I_{F}^{2}(RMS)$

For more information, please refer to the following application notes related to the power losses :

- AN604: Calculation of conduction losses in a power rectifier
- AN4021: Calculation of reverse losses on a power diode

Symbol	Parameters	Test conditions		Тур.	Max.	Unit
t _{rr}	Reverse recovery time	I _F = 0.5 A, I _{rr} = 0.25 A, I _R = 1 A		-	75	ns
t _{fr}	Forward recovery time	I _F = 1 A, dI _F /dt = 50 A/μs, V _{FR} = 1.1 V _{F(max.)}		-	300	ns
V _{FP}	Forward recovery voltage			-	18	V

Table 4. Dynamic characteristics (T_j = 25 °C unless otherwise stated)

1.1 Characteristics (curves)

Figure 3. Relative variation of thermal impedance junction to ambient versus pulse duration (DO-41) Figure 4. Relative variation of thermal impedance junction to ambient versus pulse duration (SMA)

DS3067 - Rev

57

page 5/11

2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

2.1 DO-41 package information

- Epoxy meets UL 94, V0
- Band indicates cathode
- Bending method (DO-41): see Application note AN1471

Table 5. DO-41 package mechanical data

	Dimensions						
Ref.	Millimeters			Inche	es (for reference	only)	
	Min.	Тур.	Max.	Min.	Тур.	Max.	
A	4.07	-	5.20	0.160	-	0.205	
В	2.04	-	2.71	0.080	-	0.107	
С	25.40	-		1.000	-		
D	0.71	-	0.86	0.028	-	0.0034	

2.2 SMA package information

57

- Epoxy meets UL94, V0
- Cooling method : by conduction (C)

Figure 8. SMA package outline

Table 6. SMA package mechanical data

	Dimensions					
Ref.	Millimeters		Inches (for re	ference only)		
	Min.	Max.	Min.	Max.		
A1	1.90	2.45	0.074	0.097		
A2	0.05	0.20	0.001	0.008		
b	1.25	1.65	0.049	0.065		
с	0.15	0.40	0.005	0.016		
D	2.25	2.90	0.088	0.115		
E	4.80	5.35	0.188	0.211		
E1	3.95	4.60	0.155	0.182		
L	0.75	1.50	0.029	0.060		

3 Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
STTH110	STTH110	DO-41	0.34 g	2000	Ammopack
STTH110A	H10	SMA	0.068 g	5000	Tape and reel 13"
STTH110RL	STTH110	DO-41	0.34 g	5000	Tape and reel 13"

Table 7. Ordering information

Revision history

Table 8. Document revision history

Date	Revision	Changes
Jan-2003	1	Initial release.
30-Sept-2009	2	Updated Table 8.
20-Dec-2013	3	Updated Table 4.
11-Dec-2019	4	Updated Table 3.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics – All rights reserved