Voltage Regulator - # **Adjustable Output, Positive** 100 mA # LM317L, NCV317L The LM317L is an adjustable 3-terminal positive voltage regulator capable of supplying in excess of 100 mA over an output voltage range of 1.2 V to 37 V. This voltage regulator is exceptionally easy to use and requires only two external resistors to set the output voltage. Further, it employs internal current limiting, thermal shutdown and safe area compensation, making them essentially blow-out proof. The LM317L serves a wide variety of applications including local, on card regulation. This device can also be used to make a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM317L can be used as a precision current regulator. #### **Features** - Output Current in Excess of 100 mA - Output Adjustable Between 1.2 V and 37 V - Internal Thermal Overload Protection - Internal Short Circuit Current Limiting - Output Transistor Safe-Area Compensation - Floating Operation for High Voltage Applications - Standard 3-Lead Transistor Package - Eliminates Stocking Many Fixed Voltages - NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable - These are Pb-Free Devices ### Simplified Application - * Cin is required if regulator is located an appreciable distance from power supply filter. - ** Co is not needed for stability, however, it does improve transient response. $$V_{out} = 1.25 \ V \left(1 + \frac{R_2}{R_1} \right) + I_{Adj} R_2$$ Since $I_{\mbox{\scriptsize Adj}}$ is controlled to less than 100 $\mbox{$\mu$A},$ the error associated with this term is negligible in most applications. ON Semiconductor® www.onsemi.com # LOW CURRENT THREE-TERMINAL ADJUSTABLE POSITIVE **VOLTAGE REGULATOR** **D SUFFIX CASE 751** 1. V_{in} 2. V_{out} V_{out} Adjust 5. N.C. 6. V_{out} 7. V_{out} 8. N.C. **BENT LEAD** TO-92 **Z SUFFIX** CASE 29-10 Pin 1. Adjust 2. V_{out} 3. Vin #### ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet. #### **DEVICE MARKING INFORMATION** See general marking information in the device marking section on page 9 of this data sheet. #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |--|---|---------------------------------|-------------------| | Input-Output Voltage Differential | V _I –V _O | 40 | Vdc | | Power Dissipation Case 29 (TO-92) T _A = 25°C Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Case | P _D
R _{θJA}
R _θ JC | Internally Limited
160
83 | W
°C/W
°C/W | | Case 751 (SOIC-8) (Note 1) T _A = 25°C Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Case | P _D
R _{θJA}
R _{θJC} | Internally Limited
180
45 | W
°C/W
°C/W | | Maximum Junction Temperature | T _{JMAX} | +150 | °C | | Storage Temperature Range | T _{stg} | -65 to +150 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - 1. SOIC-8 Junction-to-Ambient Thermal Resistance is for minimum recommended pad size. Refer to Figure 24 for Thermal Resistance variation versus pad size. - This device series contains ESD protection and exceeds the following tests: Human Body Model, 2000 V per MIL STD 883, Method 3015. Machine Model Method, 200 V. Figure 1. Representative Schematic Diagram #### **ELECTRICAL CHARACTERISTICS** $(V_I - V_O = 5.0 \text{ V}; I_O = 40 \text{ mA}; T_J = T_{low} \text{ to } T_{high} \text{ (Note 3)}; I_{max} \text{ and } P_{max} \text{ (Note 4)}; unless otherwise noted.)}$ | | | | LM317 | 7L, LB, NCV | 317LB | | |---|--------|---------------------|----------|-------------|-----------|------------------------| | Characteristics | Figure | Symbol | Min | Тур | Max | Unit | | Line Regulation (Note 5) $T_A = 25^{\circ}C, 3.0 \text{ V} \leq V_I - V_O \leq 40 \text{ V}$ | 1 | Reg _{line} | - | 0.01 | 0.04 | %/V | | Load Regulation (Note 5), T_A = 25°C
10 mA \leq I _O \leq I _{max} – LM317L
$V_O \leq$ 5.0 V
$V_O \geq$ 5.0 V | 2 | Reg _{load} | | 5.0
0.1 | 25
0.5 | mV
% V _O | | Adjustment Pin Current | 3 | I_{Adj} | _ | 50 | 100 | μΑ | | Adjustment Pin Current Change
$2.5 \text{ V} \le \text{V}_{\text{I}} - \text{V}_{\text{O}} \le 40 \text{ V}, P_{\text{D}} \le P_{\text{max}}$
$10 \text{ mA} \le \text{I}_{\text{O}} \le \text{I}_{\text{max}} - \text{LM317L}$ | 1, 2 | ΔI_{Adj} | - | 0.2 | 5.0 | μΑ | | Reference Voltage $3.0 \text{ V} \leq \text{V}_I - \text{V}_O \leq 40 \text{ V}, \text{P}_D \leq \text{P}_{max}$ $10 \text{ mA} \leq \text{I}_O \leq \text{I}_{max} - \text{LM317L}$ | 3 | V _{ref} | 1.20 | 1.25 | 1.30 | V | | Line Regulation (Note 5), 3.0 V ≤ V _I − V _O ≤ 40 V | 1 | Reg _{line} | _ | 0.02 | 0.07 | %/V | | Load Regulation (Note 5) $10 \text{ mA} \le I_O \le I_{max} - LM317L$ $V_O \le 5.0 \text{ V}$ $V_O \ge 5.0 \text{ V}$ | 2 | Reg _{load} | | 20
0.3 | 70
1.5 | mV
% V _O | | Temperature Stability ($T_{low} \le T_J \le T_{high}$) | 3 | T _S | - | 0.7 | - | % V _O | | Minimum Load Current to Maintain Regulation ($V_I - V_O = 40 \text{ V}$) | 3 | I _{Lmin} | _ | 3.5 | 10 | mA | | $\begin{aligned} &\text{Maximum Output Current} \\ &V_I - V_O \leq 6.25 \text{ V, } P_D \leq P_{max}, \text{ Z Package} \\ &V_I - V_O \leq 40 \text{ V, } P_D \leq P_{max}, T_A = 25^{\circ}\text{C, Z Package} \end{aligned}$ | 3 | I _{max} | 100
- | 200
20 | -
- | mA | | RMS Noise, % of V_O
$T_A = 25^{\circ}C$, 10 Hz \leq f \leq 10 kHz | - | N | - | 0.003 | - | % V _O | | Ripple Rejection (Note 6)
$V_O = 1.2 \text{ V}, f = 120 \text{ Hz}$
$C_{Adj} = 10 \mu\text{F}, V_O = 10.0 \text{ V}$ | 4 | RR | 60
- | 80
80 | -
- | dB | | Thermal Shutdown (Note 7) | - | - | - | 180 | _ | °C | | Long Term Stability, $T_J = T_{high}$ (Note 8)
$T_A = 25^{\circ}C$ for Endpoint Measurements | 3 | S | - | 0.3 | 1.0 | %/1.0 k
Hrs. | ^{8.} Since Long-Term Stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot. Figure 2. Line Regulation and $\Delta I_{\mbox{Adj}}/\mbox{Line}$ Test Circuit Figure 3. Load Regulation and $\Delta I_{\mbox{Adj}}/\mbox{Load Test Circuit}$ Figure 4. Standard Test Circuit Figure 5. Ripple Rejection Test Circuit Figure 6. Load Regulation Figure 7. Ripple Rejection Figure 8. Current Limit Figure 9. Dropout Voltage Figure 10. Minimum Operating Current Figure 11. Ripple Rejection versus Frequency Figure 12. Temperature Stability Figure 13. Adjustment Pin Current Figure 15. Output Noise Figure 16. Line Transient Response Figure 17. Load Transient Response #### **APPLICATIONS INFORMATION** #### **Basic Circuit Operation** The LM317L is a 3-terminal floating regulator. In operation, the LM317L develops and maintains a nominal 1.25 V reference (V_{ref}) between its output and adjustment terminals. This reference voltage is converted to a programming current (I_{PROG}) by R_1 (see Figure 13), and this constant current flows through R_2 to ground. The regulated output voltage is given by: $$V_{out} = V_{ref} (1 + \frac{R_2}{R_1}) + I_{Adj} R_2$$ Since the current from the adjustment terminal (I_{Adj}) represents an error term in the equation, the LM317L was designed to control I_{Adj} to less than 100 μA and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will rise. Since the LM317L is a floating regulator, it is only the voltage differential across the circuit which is important to performance, and operation at high voltages with respect to ground is possible. Figure 18. Basic Circuit Configuration #### **Load Regulation** The LM317L is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor (R1) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of R2 can be returned near the load ground to provide remote ground sensing and improve load regulation. #### **External Capacitors** A 0.1 μ F disc or 1.0 μ F tantalum input bypass capacitor (C_{in}) is recommended to reduce the sensitivity to input line impedance. The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor (C_{Adj}) prevents ripple from being amplified as the output voltage is increased. A 10 μ F capacitor should improve ripple rejection about 15 dB at 120 Hz in a 10 V application. Although the LM317L is stable with no output capacitance, like any feedback circuit, certain values of external capacitance can cause excessive ringing. An output capacitance (C_O) in the form of a 1.0 μF tantalum or 25 μF aluminum electrolytic capacitor on the output swamps this effect and insures stability. #### **Protection Diodes** When external capacitors are used with any IC regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator. Figure 14 shows the LM317L with the recommended protection diodes for output voltages in excess of 25 V or high capacitance values ($C_O > 10~\mu F,~C_{Adj} > 5.0~\mu F$). Diode D_1 prevents C_O from discharging thru the IC during an input short circuit. Diode D_2 protects against capacitor C_{Adj} discharging through the IC during an output short circuit. The combination of diodes D_1 and D_2 prevents C_{Adj} from discharging through the IC during an input short circuit. Figure 20. Adjustable Current Limiter Figure 22. Slow Turn-On Regulator Figure 19. Voltage Regulator with Protection Diodes D₁ protects the device during an input short circuit. Figure 21. 5.0 V Electronic Shutdown Regulator Figure 23. Current Regulator Figure 24. SOP-8 Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length **MARKING DIAGRAMS** # SOIC-8 **CASE 751** 8 <u>A A A A</u> XXXXX **ALYW** 888 XXXXX = 317LB, LM317 L XXX = LBZ, LZ, LZR= Assembly Location = Wafer Lot = Year W = Work Week TO-92 **CASE 29-10** LM317 XXX **ALYW** = Wafer Lot Υ = Year = Work Week = Assembly Location = Pb-Free Package #### **ORDERING INFORMATION** | Device | Operating Temperature Range | Package | Shipping [†] | |---------------|----------------------------------|------------------|-----------------------| | LM317LBDG | | SOIC-8 (Pb-Free) | 98 Units / Rail | | LM317LBDR2G | - | SOIC-8 (Pb-Free) | 2500/Tape & Reel | | LM317LBZG | - | TO-92 (Pb-Free) | 2000 Units / Bag | | LM317LBZRAG | - | TO-92 (Pb-Free) | 2000 Tape & Reel | | LM317LBZRPG | T _J = -40°C to +125°C | TO-92 (Pb-Free) | 2000 Ammo Pack | | NCV317LBDG* | - | SOIC-8 (Pb-Free) | 98 Units / Rail | | NCV317LBDR2G* | - | SOIC-8 (Pb-Free) | 2500/Tape & Reel | | NCV317LBZG* | - | TO-92 (Pb-Free) | 2000 Units / Bag | | NCV317LBZRAG* | - | TO-92 (Pb-Free) | 2000 Tape & Reel | | LM317LDG | | SOIC-8 (Pb-Free) | 98 Units / Rail | | LM317LDR2G | | SOIC-8 (Pb-Free) | 2500/Tape & Reel | | LM317LZG | | TO-92 (Pb-Free) | 2000 Units / Bag | | LM317LZRAG | T _J = 0°C to +125°C | TO-92 (Pb-Free) | 2000 Tape & Reel | | LM317LZREG | - | TO-92 (Pb-Free) | 2000 Tape & Reel | | LM317LZRMG | - | TO-92 (Pb-Free) | 2000 Ammo Pack | | LM317LZRPG | - | TO-92 (Pb-Free) | 2000 Ammo Pack | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{*}NCV devices: T_{low} = -40°C, T_{high} = +125°C. Guaranteed by design. NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable. TO-92 (TO-226) 1 WATT CASE 29-10 ISSUE D **DATE 05 MAR 2021** #### STRAIGHT LEAD #### NOTES: - DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009. - 2. CONTROLLING DIMENSION: MILLIMETERS - 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS. - 4. DIMENSION 6 AND 62 DOES NOT INCLUDE DAMBAR PROTRUSION. LEAD WIDTH INCLUDING PROTRUSION SHALL NOT EXCEED 0.20. DIMENSION 62 LOCATED ABOVE THE DAMBAR PORTION OF MIDDLE LEAD. | | MILLIMETERS | | | | |-----|-------------|-------|-------|--| | DIM | MIN. | N□M. | MAX. | | | Δ | 3.75 | 3.90 | 4.05 | | | A1 | 1.28 | 1.43 | 1.58 | | | Ø | 0.38 | 0.465 | 0.55 | | | ρQ | 0.62 | 0.70 | 0.78 | | | C | 0.35 | 0.40 | 0.45 | | | D | 7.85 | 8.00 | 8.15 | | | E | 4.75 | 4.90 | 5.05 | | | E2 | 3.90 | | | | | е | 1.27 BSC | | | | | L | 13.80 | 14.00 | 14.20 | | #### **STYLES AND MARKING ON PAGE 3** | DOCUMENT NUMBER: | 98AON52857E | Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | |------------------|-----------------------|---|-------------|--|--| | DESCRIPTION: | TO-92 (TO-226) 1 WATT | | PAGE 1 OF 3 | | | ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. TO-92 (TO-226) 1 WATT CASE 29-10 ISSUE D **DATE 05 MAR 2021** #### FORMED LEAD #### NOTES: - DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009. - 2. CONTROLLING DIMENSION: MILLIMETERS - 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS. - 4. DIMENSION 6 AND 62 DOES NOT INCLUDE DAMBAR PROTRUSION. LEAD WIDTH INCLUDING PROTRUSION SHALL NOT EXCEED 0.20. DIMENSION 62 LOCATED ABOVE THE DAMBAR PORTION OF MIDDLE LEAD. | | MILLIMETERS | | | | | |-----|-------------|----------|-------|--|--| | DIM | MIN. | N□M. | MAX. | | | | Α | 3.75 | 3.90 | 4.05 | | | | A1 | 1.28 | 1.43 | 1.58 | | | | b | 0.38 | 0.465 | 0.55 | | | | b2 | 0.62 | 0.70 | 0.78 | | | | C | 0.35 | 0.40 | 0.45 | | | | D | 7.85 | 8.00 | 8.15 | | | | E | 4.75 | 4.90 | 5.05 | | | | E2 | 3.90 | | | | | | u | 2.50 BSC | | | | | | L | 13.80 | 14.00 | 14.20 | | | | L2 | 13.20 | 13.60 | 14.00 | | | | L3 | · | 3.00 REF | | | | #### **STYLES AND MARKING ON PAGE 3** | DOCUMENT NUMBER: | 98AON52857E | Electronic versions are uncontrolled except when accessed directly from the Document Repos
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | |------------------|-----------------------|---|-------------|--|--| | DESCRIPTION: | TO-92 (TO-226) 1 WATT | | PAGE 2 OF 3 | | | ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ## TO-92 (TO-226) 1 WATT CASE 29-10 ISSUE D #### **DATE 05 MAR 2021** | STYLE 1:
PIN 1.
2.
3. | EMITTER
BASE
COLLECTOR | STYLE 2:
PIN 1.
2.
3. | BASE
EMITTER
COLLECTOR | STYLE 3:
PIN 1.
2.
3. | ANODE
ANODE
CATHODE | PIN 1.
2. | CATHODE
CATHODE
ANODE | | DRAIN | |--------------------------------|------------------------------|--------------------------------|------------------------------|---------------------------------|---------------------------|--------------|-----------------------------------|--------------|-----------------------------------| | | GATE | PIN 1. | SOURCE
DRAIN | | | PIN 1.
2. | BASE 1
EMITTER
BASE 2 | 2. | CATHODE
GATE
ANODE | | 2. | ANODE
CATHODE & ANODE | PIN 1.
2. | GATE | PIN 1.
2. | ANODE 1 | 2. | EMITTER
COLLECTOR
BASE | | | | 2. | ANODE | PIN 1 | | PIN 1 | ANODE | PIN 1.
2. | GATE
ANODE
CATHODE | 2. | NOT CONNECTED
CATHODE
ANODE | | 2. | | | SOURCE
GATE | STYLE 23:
PIN 1.
2.
3. | GATE | PIN 1.
2. | | PIN 1.
2. | MT 1 | | | V _{CC} | PIN 1.
2. | MT | STYLE 28:
PIN 1.
2.
3. | CATHODE | PIN 1.
2. | NOT CONNECTED
ANODE
CATHODE | | | | | GATE | PIN 1.
2. | | STYLE 33:
PIN 1.
2.
3. | RETURN | 2. | INPUT
GROUND
LOGIC | | | # GENERIC MARKING DIAGRAM* XXXX = Specific Device Code A = Assembly Location L = Wafer Lot Y = Year W = Work Week = Pb-Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. | DOCUMENT NUMBER: | 98AON52857E | Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | |------------------|-----------------------|--|-------------|--|--| | DESCRIPTION: | TO-92 (TO-226) 1 WATT | | PAGE 3 OF 3 | | | ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. SOIC-8 NB CASE 751-07 **ISSUE AK** **DATE 16 FEB 2011** - NOTES: 1. DIMENSIONING AND TOLERANCING PER - ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. - DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. - MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE - DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. - 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07. | | MILLIN | IETERS | INC | HES | | |-----|--------|--------|-----------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 4.80 | 5.00 | 0.189 | 0.197 | | | В | 3.80 | 4.00 | 0.150 | 0.157 | | | C | 1.35 | 1.75 | 0.053 | 0.069 | | | D | 0.33 | 0.51 | 0.013 | 0.020 | | | G | 1.27 | 7 BSC | 0.050 BSC | | | | Н | 0.10 | 0.25 | 0.004 | 0.010 | | | J | 0.19 | 0.25 | 0.007 | 0.010 | | | K | 0.40 | 1.27 | 0.016 | 0.050 | | | M | 0 ° | 8 ° | 0 ° | 8 ° | | | N | 0.25 | 0.50 | 0.010 | 0.020 | | | S | 5.80 | 6.20 | 0.228 | 0.244 | | # **SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### **GENERIC MARKING DIAGRAM*** XXXXX = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week W = Pb-Free Package XXXXXX AYWW AYWW Ŧ \mathbb{H} Discrete **Discrete** (Pb-Free) XXXXXX = Specific Device Code = Assembly Location Α = Year ww = Work Week = Pb-Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking. #### **STYLES ON PAGE 2** | DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Reposit
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | | |------------------|-------------|---|-------------|--|--| | DESCRIPTION: | SOIC-8 NB | | PAGE 1 OF 2 | | | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others. #### SOIC-8 NB CASE 751-07 ISSUE AK #### **DATE 16 FEB 2011** | STYLE 1: PIN 1. EMITTER 2. COLLECTOR 3. COLLECTOR 4. EMITTER 5. EMITTER 6. BASE 7. BASE 8. EMITTER | STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 3. COLLECTOR, #2 4. COLLECTOR, #2 5. BASE, #2 6. EMITTER, #2 7. BASE, #1 8. EMITTER, #1 | STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #1 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. GATE, #1 8. SOURCE, #1 | STYLE 4: PIN 1. ANODE 2. ANODE 3. ANODE 4. ANODE 5. ANODE 6. ANODE 7. ANODE 8. COMMON CATHODE | |--|---|---|--| | STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN 4. DRAIN 5. GATE 6. GATE 7. SOURCE 8. SOURCE | 7. BASE, #1 8. EMITTER, #1 STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN 4. SOURCE 5. SOURCE 6. GATE 7. GATE 8. SOURCE | STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd | STYLE 8:
PIN 1. COLLECTOR, DIE #1
2. BASE, #1
3. BASE, #2 | | STYLE 9: PIN 1. EMITTER, COMMON 2. COLLECTOR, DIE #1 3. COLLECTOR, DIE #2 4. EMITTER, COMMON 5. EMITTER, COMMON 6. BASE, DIE #2 7. BASE, DIE #1 8. EMITTER, COMMON | STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND 5. GROUND 6. BIAS 2 7. INPUT 8. GROUND | STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 8. DRAIN 1 | STYLE 12: PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN | | STYLE 13: PIN 1. N.C. 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN | STYLE 14: PIN 1. N-SOURCE 2. N-GATE 3. P-SOURCE 4. P-GATE 5. P-DRAIN 6. P-DRAIN 7. N-DRAIN 8. N-DRAIN | STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 6. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON | STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 4. BASE, DIE #2 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 7. COLLECTOR, DIE #1 8. COLLECTOR, DIE #1 | | STYLE 17: PIN 1. VCC 2. V2OUT 3. V1OUT 4. TXE 5. RXE 6. VEE 7. GND 8. ACC | STYLE 18: PIN 1. ANODE 2. ANODE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. CATHODE 8. CATHODE | STYLE 19: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. MIRROR 1 | STYLE 20: PIN 1. SOURCE (N) 2. GATE (N) 3. SOURCE (P) 4. GATE (P) 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN | | 5. RXE 6. VEE 7. GND 8. ACC STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3. CATHODE 3 4. CATHODE 4 5. CATHODE 5 6. COMMON ANODE 7. COMMON ANODE 8. CATHODE 6 | STYLE 22: PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3. COMMON CATHODE/VCC 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND | STYLE 23: PIN 1. LINE 1 IN 2. COMMON ANODE/GND 3. COMMON ANODE/GND 4. LINE 2 IN 5. LINE 2 OUT 6. COMMON ANODE/GND 7. COMMON ANODE/GND 8. LINE 1 OUT | STYLE 24: PIN 1. BASE 2. EMITTER 3. COLLECTOR/ANODE 4. COLLECTOR/ANODE 5. CATHODE 6. CATHODE 7. COLLECTOR/ANODE 8. COLLECTOR/ANODE | | STYLE 25: PIN 1. VIN 2. N/C 3. REXT 4. GND 5. IOUT 6. IOUT 7. IOUT 8. IOUT | STYLE 26: PIN 1. GND 2. dv/dt 3. ENABLE 4. ILIMIT 5. SOURCE 6. SOURCE 7. SOURCE 8. VCC | STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN | STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND 5. V MON 6. VBULK 7. VBULK 8. VIN | | STYLE 29: PIN 1. BASE, DIE #1 2. EMITTER, #1 3. BASE, #2 4. EMITTER, #2 5. COLLECTOR, #2 6. COLLECTOR, #2 7. COLLECTOR, #1 8. COLLECTOR, #1 | STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 3. GATE 2 4. SOURCE 2 5. SOURCE 1/DRAIN 2 6. SOURCE 1/DRAIN 2 7. SOURCE 1/DRAIN 2 8. GATE 1 | | | | DOCUMENT NUMBER: | 98ASB42564B | Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | |------------------|-------------|---|-------------| | DESCRIPTION: | SOIC-8 NB | | PAGE 2 OF 2 | onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer p # PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative onsemi Website: www.onsemi.com