

Automotive 200 V, 2 A ultrafast diode

SMA

Features

- AEC-Q101 qualified
- · Very low conduction losses
- Negligible switching losses
- Low forward and reverse recovery times
- High junction temperature
- PPAP capable
- ECOPACK2 compliant

Applications

- DC/DC converter
- · Reverse polarity protection
- LED Lighting
- Injection system

Description

The STTH2R02AY is based on ST's 200 V planar Pt doping technology.

This is leading to best in class V_F/Q_{RR} performances, especially in high temperature environment.

Packaged in SMA package, this device is particularly suitable for high frequency operations in automotive applications.

Product status	
STTH2R02AY	

Product summary			
Symbol	Value		
I _{F(AV)}	2 A		
V_{RRM}	200 V		
T _{j(max.)}	175 °C		
$V_{F(typ.)}$	0.71 V		
t _{rr} (typ.)	15 ns		

1 Characteristics

Table 1. Absolute ratings (limiting values at 25 °C, unless otherwise specified)

Symbol	Parameter	Value	Unit	
V _{RRM}	Repetitive peak reverse voltage (T _j = -40 °C to +175 °	200	V	
I _{F(RMS)}	Forward rms current		60	Α
I _{F(AV)}	Average forward current δ = 0.5, square wave	2	Α	
I _{FSM}	Surge non repetitive forward current	62	Α	
T _{stg}	Storage temperature range	-65 to +175	°C	
Tj	Maximum operating junction temperature	+175	°C	

Table 2. Thermal resistance parameter

Symbol	Parameter	Max. value	Unit
$R_{th(j-l)}$	Junction to lead	28	°C/W

For more information, please refer to the following application note:

• AN5088 : Rectifiers thermal management, handling and mounting recommendations

Table 3. Static electrical characteristics

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
	Devene le disere aument	T _j = 25 °C	$V_R = V_{RRM}$	-		2.5	μA
I _R	Reverse leakage current	T _j = 125 °C		-	2.5	25	
		T _j = 25 °C	I _F = 2 A	-	0.90	1.04	
V _F Forward voltage	Forward voltage drop	T _j = 150 °C		-	0.71	0.82	V
		T _j = 25 °C	I _F = 6 A	-		1.25	

^{1.} Pulse test: $t_p = 5 \text{ ms}$, $\delta < 2\%$

To evaluate the conduction losses, use the following equation:

$$P = 0.64 \times I_{F(AV)} + 0.09 \times I_{F}^{2}(RMS)$$

For more information, please refer to the following application notes related to the power losses:

- AN604: Calculation of conduction losses in a power rectifier
- AN4021: Calculation of reverse losses on a power diode

Table 4. Dynamic characteristics ($T_j = 25$ °C unless otherwise specified)

Symbol	Parameters	Test conditions	Min.	Тур.	Max.	Unit
	Povorno rogovory timo	$I_F = 1 \text{ A, } dI_F/dt = -50 \text{ A/}\mu\text{s, } V_R = 30 \text{ V}$	-	23	30	no
۱۳۲	Reverse recovery time	$I_F = 1 \text{ A, } dI_F/dt = -100 \text{ A/}\mu\text{s, } V_R = 30 \text{ V}$	-	15	20	ns
I _{RM}	Reverse recovery current	I_F = 2 A, dI_F/dt = -200 A/ μ s, V_R = 160 V, T_j = 125 °C	-	3.5		Α

DS13660 - Rev 1 page 2/9

^{2.} Pulse test: t_p = 380 μ s, δ < 2%

1.2

0.8

0.0

1.1 Characteristics (curves)

Figure 2. Forward voltage drop versus forward current (typical values) $I_{F}(A)$ 100.00 10.00 1.00 T_i = 150 °C $V_{F}(V)$ 0.01 1.4 1.6 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Figure 3. Forward voltage drop versus forward current (maximum values)

1.8

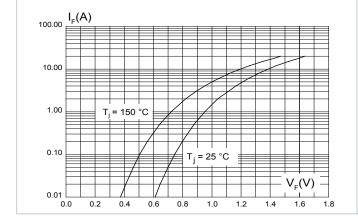


Figure 4. Relative variation of thermal impedance junction to lead versus pulse duration

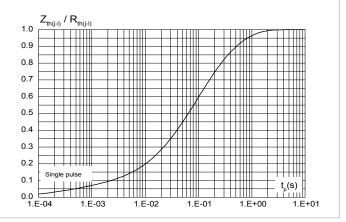


Figure 5. Reverse recovery charges versus dI_F/dt (typical values)

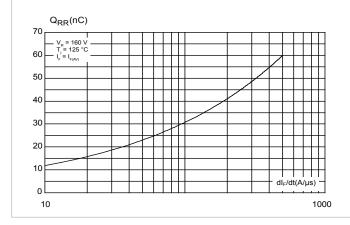
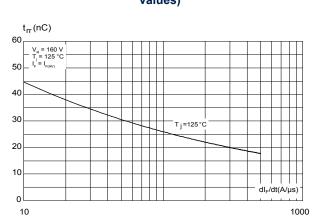



Figure 6. Reverse recovery time versus dl_F/dt (typical values)

DS13660 - Rev 1 page 3/9

Figure 7. Peak reverse recovery current versus dl_F/dt (typical values)

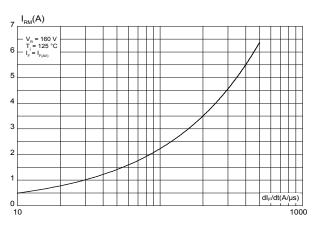


Figure 8. Relative variations of dynamic parameters versus junction temperature

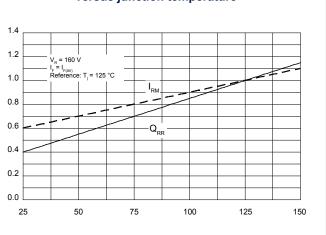


Figure 9. Junction capacitance versus reverse voltage applied (typical values)

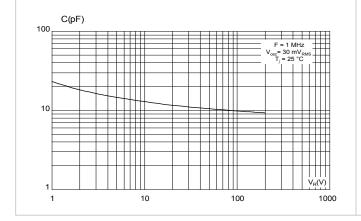
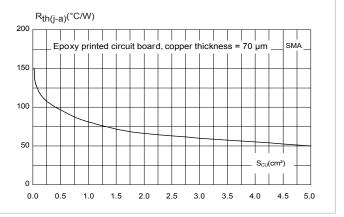



Figure 10. Thermal resistance junction to ambient versus copper surface under each lead (typical values)

DS13660 - Rev 1 page 4/9

Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

2.1 SMA package information

- Epoxy meets UL94, V0
- Cooling method : by conduction (C)

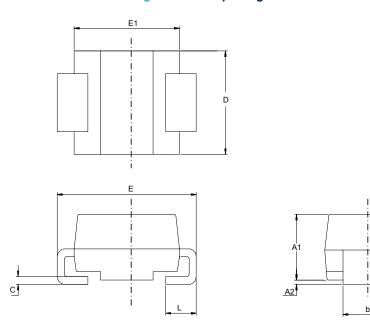
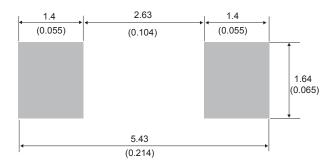


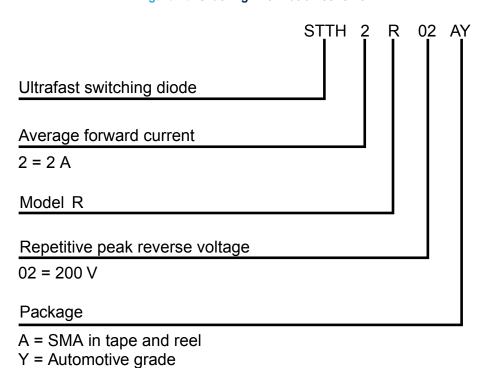
Figure 11. SMA package outline


Table 5. SMA package mechanical data

	Dimensions				
Ref.	Millimeters		Inches (for re	eference only)	
	Min.	Max.	Min.	Max.	
A1	1.90	2.45	0.074	0.097	
A2	0.05	0.20	0.001	0.008	
b	1.25	1.65	0.049	0.065	
С	0.15	0.40	0.005	0.016	
D	2.25	2.90	0.088	0.115	
Е	4.80	5.35	0.188	0.211	
E1	3.95	4.60	0.155	0.182	
L	0.75	1.50	0.029	0.060	

DS13660 - Rev 1 page 5/9

Figure 12. SMA recommended footprint in mm (inches)



DS13660 - Rev 1 page 6/9

3 Ordering information

Figure 13. Ordering information scheme

Table 6. Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
STTH2R02AY	2R2AY	SMA	68 mg	5000	Tape and reel

DS13660 - Rev 1 page 7/9

Revision history

Table 7. Document revision history

Date	Revision	Changes
16-Feb-2021	1	First issue.

DS13660 - Rev 1 page 8/9

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics - All rights reserved

DS13660 - Rev 1 page 9/9

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STTH2R02AY