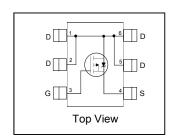


- Ultra Low On-Resistance
- P-Channel MOSFET
- Surface Mount
- Available in Tape & Reel
- Low Gate Charge
- Lead-Free
- Halogen-Free


Description

These P-channel HEXFET® Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve the extremely low on-resistance per silicon area. This benefit provides the designer with an extremely efficient device for use in battery and load management applications.

The TSOP-6 package with its customized lead frame produces a HEXFET® power MOSFET with RDS(on) 60% less than a similar size SOT-23. This package is ideal for applications where printed circuit board space is at a premium. It's unique thermal design and $R_{\rm DS(on)}$ reduction enables a current-handling increase of nearly 300% compared to the SOT-23.

HEXFET® Power MOSFET

V _{DSS}	R _{DS(on)} (max)	Ι _D
401/	112m Ω @ V_{GS} = -10 V	-3.4A
- 40V	190mΩ @ V_{GS} = -4.5V	-2.7A

G	D	S
Gate	Drain	Source

Page part number	Pookogo Typo	Standard Pack		Orderable Part Number
Base part number	Package Type	Form	Quantity	Orderable Part Number
IRF5803PbF	TSOP-6	Tape and Reel	3000	IRF5803TRPbF

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units
V_{DS}	Drain-to-Source Voltage	-40	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ -10V	- 3.4	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ -10V	-2.7	A
I _{DM}	Pulsed Drain Current ①	- 27	
P _D @T _A = 25°C	Maximum Power Dissipation ③	2.0	14/
P _D @T _A = 70°C	Maximum Power Dissipation ③	1.3	W
	Linear Derating Factor	16	mW/°C
V_{GS}	Gate-to-Source Voltage	± 20	
TJ	Operating Junction and	-55 to + 150	°C
T _{STG}	Storage Temperature Range	-95 10 + 150	

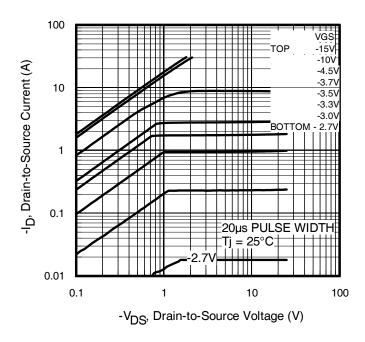
Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient ③		62.5	°C/W

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	-40			V	$V_{GS} = 0V, I_{D} = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		-0.03		V/°C	Reference to 25 $^{\circ}$ C, I _D = -1mA
D	Statia Drain to Source On Desistance			112		$V_{GS} = -10V, I_{D} = -3.4A$
$R_{DS(on)}$	Static Drain-to-Source On-Resistance			190	mΩ	$V_{GS} = -4.5V, I_D = -2.7A$
$V_{GS(th)}$	Gate Threshold Voltage	-1.0		- 3.0	V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$
gfs	Forward Trans conductance	4.0			S	$V_{DS} = -10V, I_{D} = -3.4A$
	Drain to Source Leekege Current			-10		$V_{DS} = -32V, V_{GS} = 0V$
I _{DSS}	Drain-to-Source Leakage Current			-25	μA	$V_{DS} = -32V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
	Gate-to-Source Forward Leakage			-100	- n A	$V_{GS} = -20V$
I _{GSS}	Gate-to-Source Reverse Leakage			100	nA	$V_{GS} = 20V$
Q_g	Total Gate Charge		25	37		I _D = -3.4A
Q_{gs}	Gate-to-Source Charge		4.5	6.8	nC	V _{DS} = -20V
Q_{gd}	Gate-to-Drain ('Miller') Charge		3.5	5.3		V _{GS} = -10V
t _{d(on)}	Turn-On Delay Time		43			V _{DD} = -20V②
t _r	Rise Time		550			I _D = -1.0A
$t_{d(off)}$	Turn-Off Delay Time		88		ns	$R_G = 6.0\Omega$
t _f	Fall Time		50			V _{GS} = -10V
C _{iss}	Input Capacitance		1110			V _{GS} = 0V
C _{oss}	Output Capacitance		93		рF	V _{DS} = -25V
C _{rss}	Reverse Transfer Capacitance		73			f = 100KHz

Source-Drain Ratings and Characteristics


	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current (Body Diode)			-2.0		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			-27		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage			-1.2	٧	$T_J = 25^{\circ}C, I_S = -2.0A, V_{GS} = 0V ②$
t _{rr}	Reverse Recovery Time		27	40	ns	$T_J = 25^{\circ}C$, $I_F = -2.0A$
Q _{rr}	Reverse Recovery Charge		34	50	nC	di/dt = 100A/µs ②

Notes:

① Repetitive rating; pulse width limited by max. junction temperature. ② Pulse width \leq 400µs; duty cycle \leq 2%.

3 Surface mounted on 1 in square Cu board

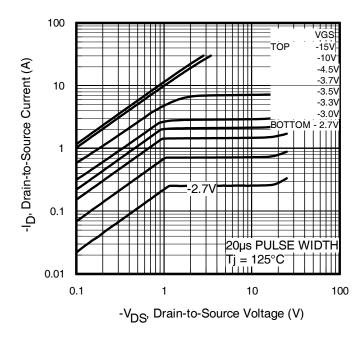
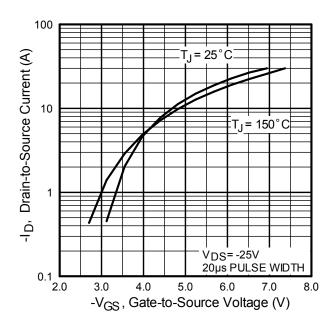
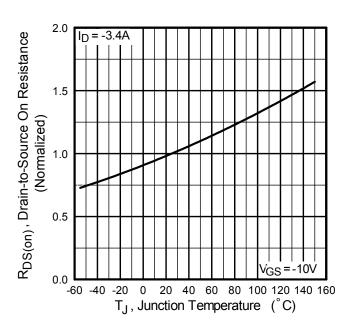
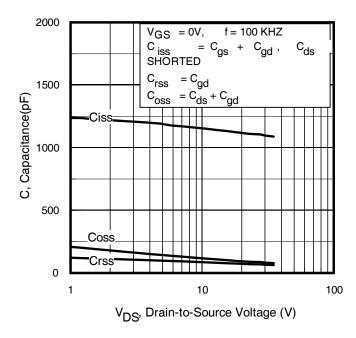




Fig. 1 Typical Output Characteristics

Fig. 2 Typical Output Characteristics



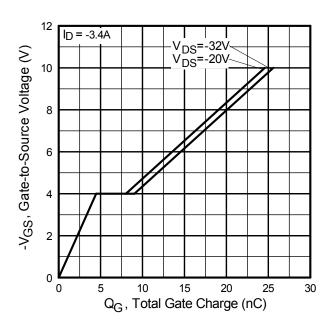


Fig. 4 Normalized On-Resistance vs. Temperature

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

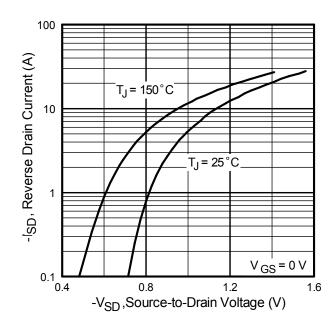


Fig. 7 Typical Source-to-Drain Diode Forward Voltage

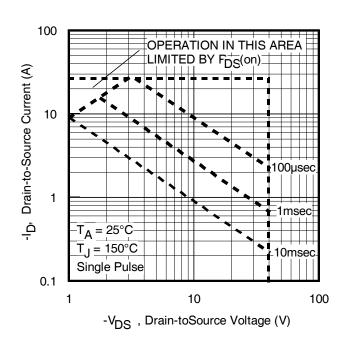


Fig 8. Maximum Safe Operating Area

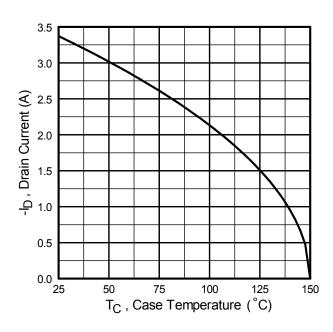


Fig 9. Maximum Drain Current vs. Case Temperature

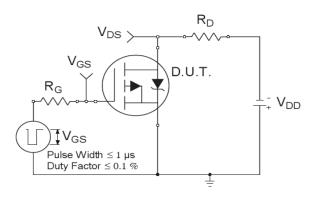


Fig 10a. Switching Time Test Circuit

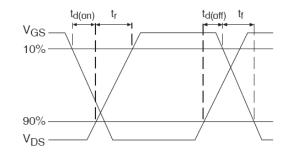


Fig 10b. Switching Time Waveforms

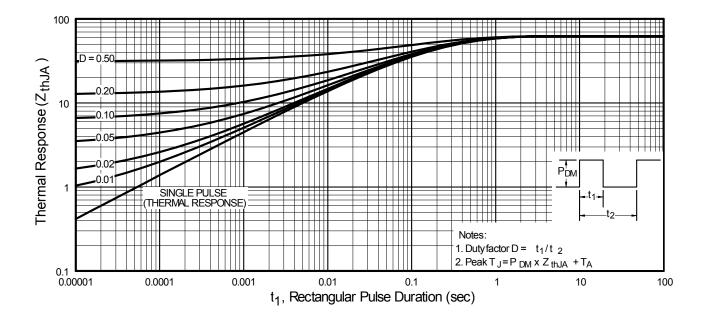
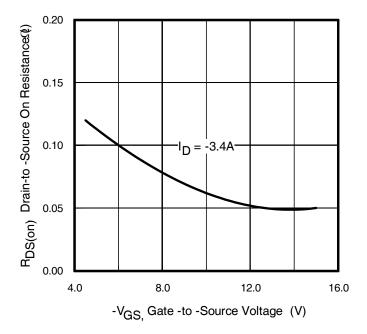
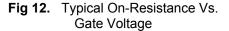
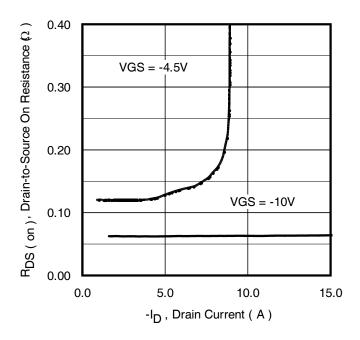





Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 13. Typical On-Resistance Vs. Drain Current

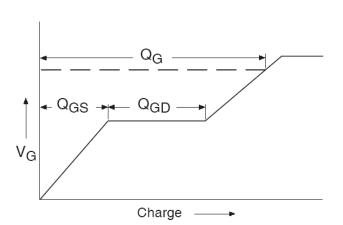


Fig 14a. Basic Gate Charge Waveform

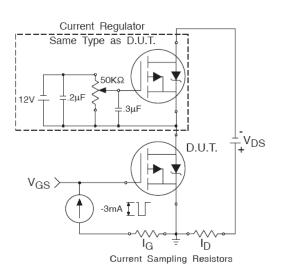
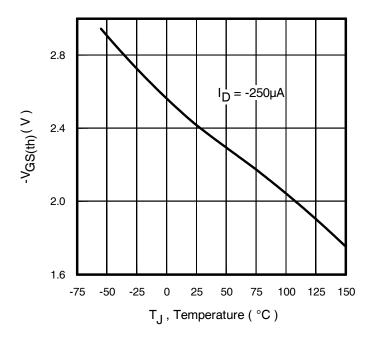
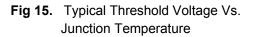
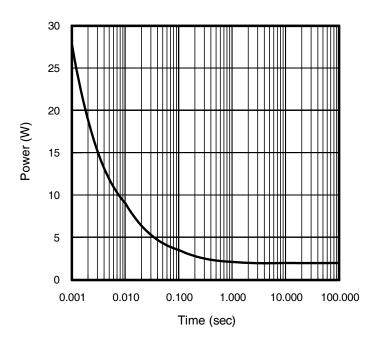
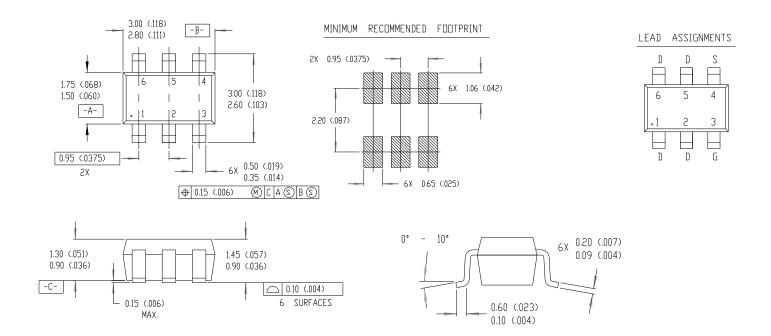
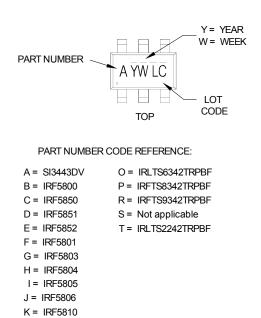




Fig 14b. Gate Charge Test Circuit


Fig 16. Typical Power Vs. Time

TSOP-6 Package Outline

TSOP-6 Part Marking Information

Note: A line above the work week (as shown here) indicates Lead-Free.

N = IRF5802

DATE CODE MARKING INSTRUCTIONS

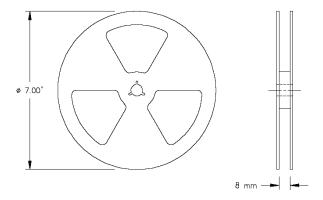
WW = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR

YE	AR	Υ	WORK WEEK	W	
2011	2001	1	01	Α	
2012	2002	2	02	В	
2013	2003	3	03	С	
2014	2004	4	04	D	
2015	2005	5			
2016	2006	6			
2017	2007	7			
2018	2008	8	1	1	
2019	2009	9	V	y	
2020	2010	0	24	Χ	
			25	Υ	
			26	Z	


WW = (27-52) IF PRECEDED BY A LETTER

YE	AR	Υ	WORK WEEK	W	
- '-	<i>-</i> u (VVLLIX	**	
2011	2001	Α	27	Α	
2012	2002	В	28	В	
2013	2003	С	29	С	
2014	2004	D	30	D	
2015	2005	Ε			
2016	2006	F			
2017	2007	G			
2018	2008	Н			
2019	2009	J	V	7	
2020	2010	K	50	Х	
			51	Υ	
			52	Z	

Note: For the most current drawing please refer to Infineon's web site www.infineon.com



TSOP-6 Tape & Reel Information

NOTES:

1. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:

1. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Note: For the most current drawing please refer to Infineon's web site www.infineon.com

Qualification Information

Qualification Level	Consumer (per JEDEC JESD47F) †			
Moisture Sensitivity Level	TSOP-6 MSL1 (per JEDEC J-STD-020D) †			
RoHS Compliant	Yes			

[†] Applicable version of JEDEC standard at the time of product release.

Revision History

Date	Comments			
01/27/2017	 Changed datasheet with Infineon logo-all pages Updated package outline and part marking on page 8. Added disclaimer on last page. 			

Trademarks of Infineon Technologies AG

µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLIR™, CoolMOS™, CoolSET™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2016-04-19 Published by Infineon Technologies AG 81726 Munich, Germany

© 2016 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference ifx1

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or **characteristics ("Beschaffenheitsgarantie").**

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.