## Products Catalog Conductive Polymer Hybrid Aluminum Electrolytic Capacitors Hybrid # IN Your Future | | Item | | Page | |------------------|---------------------------|-----------------|------| | | Guidelines and preca | autions | 1 | | | Line-up | | 8 | | | Diagram | | 9 | | Selection guide | Size·ESR Matrix list | 10 | | | Selection guide | Explanation of part numbe | rs | 11 | | | Mounting specifications | | 12 | | | Packing specifications | | 14 | | | ZA series | : 105 ℃ 10000 h | 15 | | | ZC series | : 125 ℃ 4000 h | 17 | | | ZK series | : 125 ℃ 4000 h | 19 | | | ZKU series | : 125 ℃ 4000 h | 21 | | Surface mount | ZT series | : 125 ℃ 4000 h | 23 | | type | ZS series | : 135 ℃ 4000 h | 25 | | | ZSU series | : 125 ℃ 4000 h | 27 | | | ZU series | : 135 ℃ 4000 h | 29 | | | ZE series | : 145 ℃ 2000 h | 31 | | | ZF series | : 150 ℃ 1000 h | 33 | | | ZA-A series | : 105 ℃ 10000 h | 35 | | | ZC-A series | : 125 ℃ 4000 h | 37 | | | ZK-A series | : 125 ℃ 4000 h | 39 | | | ZKU-A series | : 125 ℃ 4000 h | 41 | | Radial lead type | ZT-A series | : 125 ℃ 4000 h | 43 | | | ZS-A series | : 135 ℃ 4000 h | 45 | | | ZSU-A series | : 125 ℃ 4000 h | 47 | | | ZE-A series | : 145 ℃ 2000 h | 49 | | | ZF-A series | : 150 ℃ 1000 h | 51 | # Guidelines and precautions regarding the technical information and use of our products described in this online catalog. - If you want to use our products described in this online catalog for applications requiring special qualities or reliability, or for applications where the failure or malfunction of the products may directly jeopardize human life or potentially cause personal injury (e.g. aircraft and aerospace equipment, traffic and transportation equipment, combustion equipment, medical equipment, accident prevention, anti-crime equipment, and/or safety equipment), it is necessary to verify whether the specifications of our products fit to such applications. Please ensure that you will ask and check with our inquiry desk as to whether the specifications of our products fit to such applications use before you use our products. - The quality and performance of our products as described in this online catalog only apply to our products when used in isolation. Therefore, please ensure you evaluate and verify our products under the specific circumstances in which our products are assembled in your own products and in which our products will actually be used. - If you use our products in equipment that requires a high degree of reliability, regardless of the application, it is recommended that you set up protection circuits and redundancy circuits in order to ensure safety of your equipment. - The products and product specifications described in this online catalog are subject to change for improvement without prior notice. Therefore, please be sure to request and confirm the latest product specifications which explain the specifications of our products in detail, before you finalize the design of your applications, purchase, or use our products. - The technical information in this online catalog provides examples of our products' typical operations and application circuits. We do not guarantee the non-infringement of third party's intellectual property rights and we do not grant any license, right, or interest in our intellectual property. - If any of our products, product specifications and/or technical information in this online catalog is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially with regard to security and export control, shall be observed. ## <Regarding the Certificate of Compliance with the EU RoHS Directive/REACH Regulations> - The switchover date for compliance with the RoHS Directive/REACH Regulations varies depending on the part number or series of our products. - When you use the inventory of our products for which it is unclear whether those products are compliant with the RoHS Directive/REACH Regulation, please select "Sales Inquiry" in the website inquiry form and contact us. We do not take any responsibility for the use of our products outside the scope of the specifications, descriptions, guidelines and precautions described in this online catalog. #### **Notices** #### ■ Applicable laws and regulations - •This product complies with the RoHS Directive (Restriction of the use of certain hazardous substances in electrical and electronic equipment (DIRECTIVE 2011/65/EU and (EU)2015/863)). - No Ozone Depleting Chemicals(ODC's), controlled under the Montreal Protocol Agreement, are used in producing this product. - We do not use PBBs or PBDEs as brominated flame retardants. - Export procedure which followed export related regulations, such as foreign exchange and a foreign trade method, on the occasion of export of this product. - These products are not dangerous goods on the transportation as identified by UN(United Nations) numbers or UN classification. #### **■** Limited applications - This capacitor is designed to be used for electronics circuits such as audio/visual equipment, home appliances, computers and other office equipment, optical equipment, measuring equipment. - An advanced specification must be signed individually for high-reliability use that might threaten human life or property due to a malfunction of the capacitor. #### ■ Intellectual property rights and licenses • The technical information in this specification provides examples of our products' typical operations and application circuits. We do not guarantee the non-infringement of third party's intellectual property rights and we do not grant any license, right, or interest in our intellectual property. #### Items to be observed #### **■** For specification - This specification guarantees the quality and performance of the product as individual components. The durability differs depending on the environment and the conditions of usage. Before use, check and evaluate their compatibility with actual conditions when installed in the products. When safety requirements cannot be satisfied in your technical examination, inform us immediately. - Do not use the products beyond the specifications described in this document. #### Upon application to products where safety is regarded as important Install the following systems for a failsafe design to ensure safety if these products are to be used in equipment where a defect in these products may cause the loss of human life or other signification damage, such as damage to vehicles (automobile, train, vessel), traffic lights, medical equipment, aerospace equipment, electric heating appliances, combustion/ gas equipment, rotating rotating equipment, and disaster/crime prevention equipment. - (1) The system is equipped with a protection circuit and protection device. - (2) The system is equipped with a redundant circuit or other system to prevent an unsafe status in the event of a single fault. #### **■** Conditions of use - Before using the products, carefully check the effects on their quality and performance, and determined whether or not they can be used. These products are designed and manufactured for general-purpose and standard use in general electronic equipment. These products are not intended for use in the following special conditions. - (1) In liquid, such as Water, Oil, Chemicals, or Organic solvent. - (2) In direct sunlight, outdoors, or in dust. - (3) In vapor, such as dew condensation water of resistive element, or water leakage, salty air, or air with a high concentration corrosive gas, such as Cl<sub>2</sub>, H<sub>2</sub>S, NH<sub>3</sub>, SO<sub>2</sub>, or NOx. - (4) In an environment where strong static electricity or electromagnetic waves exist. - (5) Mounting or placing heat-generating components or inflammables, such as vinyl-coated wires, near these products. - (6) Sealing or coating of these products or a printed circuit board on which these products are mounted, with resin and other material. - (7) Using resolvent, water or water-soluble cleaner for flux cleaning agent after soldering. (In particular, when using water or a water-soluble cleaning agent, be careful not to leave water residues) - (8) Using in the atmosphere where strays acid or alkaline. - (9) Using in the atmosphere where there are excessive vibration and shock. - (10) Using in the atmosphere where there are low pressure or decompression. - Please arrange circuit design for preventing impulse or transitional voltage. Do not apply voltage, which exceeds the full rated voltage when the capacitors receive impulse voltage, instantaneous high voltage, high pulse voltage etc. - Our products there is a product are using an electrolyte solution. Therefore, misuse can result in rapid deterioration of characteristics and functions of each product. Electrolyte leakage damages printed circuit and affects performance, characteristics, and functions of customer system. ## Application guidelines (Hybrid) #### 1. Circuit design #### 1.1 Operating temperature and frequency Electrical characteristics of the capacitor are likely to change due to variation in temperature and/or frequency. Circuit designers should take these changes into consideration. (1) Effects of operating temperature on electrical parameters At higher temperatures : leakage current and capacitance increase while equivalent series resistance (ESR) decreases. At lower temperatures : leakage current and capacitance decrease while equivalent series resistance (ESR) increases. (2) Effects of frequency on electrical parameters At higher frequencies $\;\;$ : capacitance and impedance decrease while tan $\delta$ increases. At lower frequencies : heat generated by ripple current will rise due to an increase in equivalent series resistance (ESR). #### 1.2 Operating temperature and life expectancy (1) Expected life is affected by operating temperature. Generally, each 10 °C reduction in temperature will double the expected life. Use capacitors at the lowest possible temperature below the upper category temperature. (2) If operating temperatures exceed the upper category limit, rapid deterioration of electrical parameter will occur and irreversible damage will result. Measure not only the ambient temperature but also the surface temperature of the capacitor's case top, which has effects of ripple current and radiated heat from power transistors, IC's, and/or resistors. Avoid placing components, which could conduct heat to the capacitor from the back side of the circuit board. (3) The formula for calculating expected life is as follows; $$L2 = L1 \times 2^{\frac{T_1-T_2}{10}}$$ where $T_1 \ge T_2$ $L_1$ : Guaranteed life (h) at temperature, $T_1$ $^{\circ}$ L₂ : Expected life (h) at temperature, T₂ ℃ $T_1$ : Upper category temperature + temperature rise due to rated ripple current ( $^{\circ}$ C) $T_2$ : Actual operating temperature, ambient temperature + temperature rise due to ripple current ( $^{\circ}$ C) (4) Using the capacitor beyond the rated lifetime will result in short circuit, electrolyte leak, vent open, and large deterioration of characteristics. The lifetime cannot exceed 15 years due to aging of sealing rubber. #### 1.3 Load conditions to avoid The following load conditions will cause rapid deterioration of capacitor's electrical characteristics. In addition, instantaneous heating and gas generation within the capacitor may cause an operation of pressure relief vent, and that results in electrolyte leaks, explosion and/or fire ignition. The leaked electrolyte is combustible and electrically conductive. (1) Reverse voltage DC capacitors have polarity. Therefore, do not apply the reverse voltage. Find the correct polarity before insertion. (2) Charge / Discharge applications General purpose capacitors are not suitable for use in repeating charge/discharge applications. For such applications, consult a sales representative with actual application condition. Rush current must not exceed 100 A. (3) ON-OFF circuit When using capacitors in circuit where ON-OFF switching is repeated more than 10,000 times a day, consult a sales representative with actual application condition for an appropriate choice of capacitors. (4) Over voltage Do not apply a voltage exceeding the rated voltage. The rated surge voltage can be applied only for a short time. Make sure that a sum of the DC voltage and the superimposed AC ripple voltage does not exceed the rated voltage. (5) Ripple current Do not apply ripple currents exceeding the rated value. Make sure that rated ripple currents superimposed on low DC bias voltages do not cause reverse voltage conditions. Even if the current is below the rated ripple current, using the capacitor for longer than the rated lifetime will cause ESR increase and internal generation of heat, which may eventually lead to vent open, bulging of case/rubber, electrolyte leak, short circuit, explosion, or ignition in the worst case. #### 1.4 Connections in parallel Because the impedance of the capacitor and PCB's wiring are very close, various impedance values may cause unbalanced ripple current loads among parallel capacitors. Combine the same part number and wire them carefully to minimize the potential risk of an excessive ripple current concentrating to one capacitor of the smallest impedance. The capacitors cannot be used in series. #### 1.5 Capacitor mounting considerations - (1) For double sided circuit boards, avoid wiring patterns passing between the mounted capacitor and the circuit board. When a radial lead type capacitor is dipped into a solder bath, an excess solder may deposit under the capacitor by capillary action, causing short circuit between anode and cathode terminals. Also, lead holes must be placed with special care for radial lead type capacitors because laminate on capacitor's surface may become damaged during flow process. - (2) The pitch between circuit board holes should match the lead wire pitch of the radial lead type capacitors within the specified tolerances. Unmatched pitch may cause an excessive stress on lead wires during the insertion process and result in short/open circuit, increased leakage current, or electrolyte leak. - (3) Clearance for case mounted pressure relief (≥ Ø10 mm) Capacitors with case mounted pressure relief require sufficient clearance to allow for proper pressure relief operation. The minimum clearance are dependent on capacitor diameters as follows. - \* ≥ø10 mm : 2 mm minimum - (4) Wiring near the pressure relief (≥ ø10 mm) - Avoid locating high voltage or high current wiring or circuit board paths above the pressure relief. Flammable, high temperature gas that exceeds 100 $^{\circ}$ C may be released which could dissolve the wire insulation and ignite. - (5) Circuit board patterns under the capacitor Avoid circuit board runs under the capacitor, as an electrical short can occur due to an electrolyte leakage. - (6) Resonant vibration after circuit board's production may make a heavy load on the capacitor and cause rapid change in characteristics and/or capacitor's break. #### 1.6 Electrical isolation Electrically isolate the capacitor's case from cathode terminals, as well as circuit patterns. #### 1.7 Capacitor coating The laminate coating is intended for marking and identification purposes and is not meant to electrically insulate the capacitor. #### 2. Capacitor handling techniques #### 2.1 Considerations before using - (1) Capacitors have a finite life. Do not reuse or recycle capacitors from used equipment. - (2) Transient recovery voltage may be generated in the capacitor due to dielectric absorption. If required, this voltage can be discharged with a resistor with a value of about $1 \text{ k}\Omega$ . - (3) Capacitors stored for a long period of time may exhibit an increase in leakage current. This can be corrected by gradually applying rated voltage in series with a resistor of approximately $1 \text{ k}\Omega$ . - (4) If capacitors are dropped, they can be damaged mechanically or electrically. Avoid using dropped capacitors. - (5) Dented or crushed capacitors should not be used. The seal integrity can be damaged and loss of electrolyte/ shortened life can result. #### 2.2 Capacitor insertion - (1) Verify the correct capacitance and rated voltage of the capacitor. - (2) Verify the correct polarity of the capacitor before insertion. - (3) Verify the correct terminal dimension and land pattern size for surface mount type, or holes' pitch for radial lead type before mount to avoid short circuit, stress on terminals, and/or lack of terminal strength. - (4) Excessive mounting pressure can cause high leakage current, short circuit, or disconnection. - (5) When using a mounter for radial lead type, avoid cutter wear and acute angle of lead-bending with respect to circuit board. That may create excessive stress and pull the lead to damage the capacitor. #### 2.3 Reflow soldering (for surface mount type) - (1) Surface-mount type capacitor are exclusively for reflow soldering. When reflow solder is used an ambient heat condition system such as the simultaneous use of infrared and hot-air is recommended. - (2) Observe proper soldering conditions (temperature, time, etc.). Do not exceed the specified limits. If the peak temperature is high or if the heating time is long, it may cause deterioration of the electrical characteristics and life characteristics. - Recommended soldering condition is a guideline for ensuring the basic characteristics of the components, but not for the stable soldering conditions. Conditions for proper soldering should be set up according to individual conditions. - \* The Temperature on capacitor top shall be measured by using thermal couple that is fixed firmly by epoxy glue. - (3) In case of use in 2 times reflow, 2nd reflow must be done when the capacitor's temperature return back to normal level. - (4) In our recommended reflow condition, the case discoloration and the case swelling might be slightly generated. But please acknowledge that these two phenomena do not influence the reliability of the product. - (5) The crack on top marking might be occurred by reflow heat stress. But please acknowledge that it does not influence the reliability of the product. - (6) VPS (Vapor Phase Soldering) reflow can cause significant characteristics change and/ or mounting failure due to deformation by acute temperature rise. - VPS is acceptable provided that the process does not exceed recommended reflow profile and temperature rise is less than 3 $^{\circ}$ C / sec. Please contact Panasonic for detailed conditions. - (7) The vibration-proof capacitors of size Ø6.3 has support terminals extending from the bottom side to the lead edge. Then, make sure to find appropriate soldering conditions to form fillet on the support terminals if required for appearance inspection. However, even if sufficient solder fillets are not observed, the reliability of vibration-proof will not be lowered because the support terminals on the bottom side enhance the solder joint to PCB. #### 2.4 Flow soldering (for radial type) - (1) Radial lead type capacitors cannot apply to reflow soldering. - (2) Do not immerse the capacitor body into the solder bath as excessive internal pressure could result. - (3) Apply proper soldering conditions (temperature, time, etc.). Do not exceed the specified limits. - (4) Do not allow other parts or components to touch the capacitor during soldering. - (5) When mounting the radial type being touched to PCB, be sure to check the appearance of solder under the sealing rubber, which does not have an airflow structure. #### 2.5 Manual soldering - (1) Apply soldering conditions (temperature and time) based on the specification, or do not exceed temperature of 350 ℃ for 3 seconds. - (2) If a soldered capacitor must be removed and reinserted, avoid excessive stress on the capacitor leads. - (3) Avoid physical contacts between the tip of the soldering iron and capacitors to prevent or capacitor failure. - (4) When bending lead wires of radial type capacitors to match the hole pitch on PCB, avoid applying excessive stress to the capacitor body. #### 2.6 Capacitor handling after soldering - (1) Avoid moving the capacitor after soldering to prevent excessive stress on the lead wires where they enter the seal. The capacitor may break from element portion due to a torque at outer rim, causing a large stress to terminals. - (2) Do not use the capacitor as a handle when moving the circuit board assembly. The total weight of the board would apply to element portion through terminals, and the capacitor may break. - (3) Avoid striking the capacitor after assembly to prevent failure due to excessive shock. The capacitor may break due to excessive shock or load above specified range. #### 2.7 Circuit board cleaning (1) Circuit boards can be immersed or ultrasonically cleaned using suitable cleaning solvents for up to 5 minutes and up to 60 °C maximum temperatures. The boards should be thoroughly rinsed and dried. The use of ozone depleting cleaning agents is not recommended for the purpose of protecting our environment. [Target solvent] Pine Alpha ST-100S, Aqua Cleaner 210SEP, Clean-thru 750H / 750L / 710M, Sunelec B-12, Sunelec B-12, Cold Cleaner P3-375, Techno Cleaner 219, DK Be-clear CW-5790, Telpene Cleaner EC-7R, Technocare FRW-17 / FRW-1 / FRV-1 (2) Avoid using the following solvent groups unless specifically allowed in the specification; (a) Halogenated based solvents : may permeate the seal and cause internal corrosion. Especially, 1-1-1 trichloroethane must not be used on any aluminum electrolytic capacitors. (b) Alkaline based solvents : may dissolve and react to the aluminum case. (c) Petroleum based solvents: may deteriorate the sealing rubber(d) Xylene: may deteriorate the sealing rubber (e) Acetone : may erase the markings on the capacitor top - (3) A thorough drying after cleaning is required to remove residual cleaning solvents that may be trapped between the capacitor and the circuit board. Avoid drying temperatures, which exceed the upper category temperature of the capacitor. - (4) Monitor the contamination levels of cleaning solvents during use in terms of electrical conductivity, pH, specific gravity, and water content. Inside the capacitor may corrode with high density of chlorine. Control the flux density in the cleaning agent to be less than 2 mass%. - (5) Depending on the cleaning method, the marking on a capacitor may be erased or blurred. - \* Please consult us if you are not certain about acceptable cleaning solvents or cleaning methods. #### 2.8 Mounting adhesives and coating agents When using mounting adhesives or coating agents to control humidity, avoid using materials containing halogenated solvents. Also, avoid the use of chloroprene based polymers. Cure or dry out the coating agents thoroughly, and do not leave any solvents. Make sure to dry out cleaning agents completely immediately after washing the circuit board if the capacitors are mounted afterward, so that the solvents are not left under the capacitor body. Also, leave more than 1/3 of the sealing portion open, and do not cover that portion with any adhesives or coating. #### 2.9 Potting and molding Potting and molding processes cannot be recommended. They have potential risks to change the capacitor's performance and reliability due to injection pressure, diffused material into the capacitor, as well as heat accumulation by covered resin. Also, evaporated electrolyte may remain inside the resin, then turn to liquid, and possibly short circuit PCB patterns. #### 2.10 Fumigation In exporting electronic appliances with aluminum electrolytic capacitors, in some cases fumigation treatment using such halogen compound as methyl bromide is conducted for wooden boxes. If such boxes are not dried well, the halogen left in the box is dispersed while transported and enters in the capacitors inside. This possibly causes electrical corrosion of the capacitors. Therefore, after performing fumigation and drying make sure that no halogen is left. Don't perform fumigation treatment to the whole electronic appliances packed in a box. #### 2.11 Flux If you use a halogen type (Chlorine type, Bromine type, etc.) high-activity flux, please use it after confirmation in advance, as it may have an impact on performance and reliability of this product due to the residue of the flux. #### 3. Precautions for using capacitors #### 3.1 Environmental conditions Capacitors should not be stored or used in the following environments. - (1) Exposure to temperatures above the upper category or below the lower category temperature of the capacitor. - (2) Direct contact with water, salt water, or oil. - (3) High humidity conditions where water could condense on the capacitor. - (4) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, chlorine compound, bromine, bromine compound or ammonia. - (5) Exposure to ozone, radiation, or ultraviolet rays. - (6) Vibration and shock conditions exceeding specified requirements. Even within the specified requirements, a large vibration acceleration may be applied due to resonance, so be sure to evaluate and confirm with the actual product. #### 3.2 Electrical precautions - (1) Avoid touching the terminals of a capacitor as a possible electric shock could result. The exposed aluminum case is not insulated and could also cause electric shock if touched. - (2) Avoid short circuiting the area between the capacitor terminals with conductive materials including liquids such as acids or alkaline solutions. - (3) A low-molecular-weight-shiroxane which is included in a silicon material shall causes abnormal electrical characteristics. #### 4. Emergency procedures - (1) If the pressure relief of the capacitor operates, immediately turn off the equipment and disconnect from the power source. - This will minimize an additional damage caused by the vaporizing electrolyte. - (2) Avoid contact with the escaping electrolyte gas, which can exceed 100 °C temperatures. - If electrolyte or gas enters the eye, immediately flush the eye with large amounts of water. - If electrolyte or gas is ingested by mouth, gargle with water. - If electrolyte contacts the skin, wash with soap and water. #### 5. Long term storage - (1) Leakage current of a capacitor tends to increase after a long-term storage due to dielectric dissolution, and very high current may flow at the first voltage load. However, applying voltage will form the dielectric, and the leakage current will decrease. Expiration date is 42 months from the outgoing inspection date. Storage condition is to keep in room temperature (5 ℃ to 35 ℃) and humidity (45 % to 85 %) with no direct sunshine. - (2) Environmental conditions - Do not store under condition outside the area described in the specification, and also under conditions listed below. - (a) Exposure to temperatures above the upper category or below the lower category temperature of the capacitor. - (b) Direct contact with water, salt water, or oil. - (c) High humidity conditions where water could condense on the capacitor. - (d) Exposure to toxic gases such as hydrogen sulfide, sulfuric acid, nitric acid, chlorine, Chlorine compound, Bromine, Bromine compound or ammonia. - (e) Exposure to ozone, radiation, or ultraviolet rays. - (f) Vibration and shock conditions exceeding specified requirements. #### 6. Capacitor disposal When disposing capacitors, use one of the following methods. - (1) Incinerate after crushing the capacitor or puncturing the can wall (to prevent explosion due to internal pressure rise). - (2) Dispose as solid waste. NOTE: Local laws may have specific disposal requirements which must be followed. The precautions in using aluminum electrolytic capacitors follow the "Safety application guide for the use in fixed aluminum electrolytic capacitors for electronic equipment", RCR-2367D issued by JEITA in October 2017. Please refer to the above application guide for details. #### ■ AEC-Q200 compliant The products are tested based on all or part of the test conditions and methods defined in AEC-Q200. Please consult with Panasonic for the details of the product specification and specific evaluation test results, etc., and please review and approve Panasonic's product specification before ordering. #### \* Intellectual property right We, Panasonic Group are providing the product and service that customers can use without anxiety, and are working positively on the protection of our products under intellectual property rights. Representative patents relating to Conductive Polymer Hybrid Aluminum Electrolytic Capacitors are as follows: US Patent No.7497879, No.7621970, No.9208954, No.9595396, No.9966200, No.10453618, No.10559432, No.10679800, No.10685788, No.10790095 JP Patent No.5360250 EP Patent No.1808875, No.2698802 ## Line-up ### Surface mount type | Part No. Features Solution temperature range (mQ) | <u>.</u> | S | | |---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------| | | ncitance on the same of sa | (m | nm) | | Remain High High Lange (℃) (V) (V) | ME) Sign | øD | L | | | to 33 C | 5.0 | 5.8 | | High ripple current | to 56 D | 6.3 | | | ZA EEHZA | to 100 D8 | 6.3 | | | 105 °C 10000 L 27 t0 45 22 | to 220 F | 8.0 | | | 20 to 36 33 | to 330 G | 10.0 | | | LUW L3N | to 33 C | 5.0 | 5.8 | | | to 56 D | 6.3 | 5.8 | | 2C EEH2C Long life ♥ ♥ -55 to 125 30 to 80 22 | to 100 D8 | 6.3 | | | 25 to 80 27 to 45 22 | to 220 F | 8.0 | 10.2 | | 20 to 36 | to 330 G | 10.0 | | | | to 47 C | 5.0 | | | HIOD COORE CHITTEDI | to 82 D | 6.3 | | | ZK EEHZK | to 150 D8 | 6.3 | | | 135 °C 1000 b | to 270 F | 8.0 | | | | to 470 G<br>to 56 C | 10.0 | | | | | 6.3 | 5.8 | | | | 6.3 | | | | to 180 D8 | 8.0 | | | 125 € 1000 11 | to 560 G | | 10.2 | | 22 to 32 33 | to 220 F | | 10.2 | | | to 330 G | | 10.2 | | UPDATE 125 ℃ 4000 h 14 to 19 100 | to 470 G12 | | | | 7C EEU7C | | 10.0 | | | 14 to 19 120 | to 680 G12 | | 12.5 | | | | 10.0 | | | 125 °C 4000 h | to 470 G12 | _ | 12.5 | | | to 560 G16 | | 16.5 | | 145 °C 2000 h 27 to 40 33 | to 220 F | | 10.2 | | /E FEH / E | to 330 G | | 10.2 | | 27 to 40 22 | to 150 F | 8.0 | 10.2 | | | to 270 G | 10.0 | 10.2 | #### Radial lead type | Series | Part No. | Features | size | cap. | pple | emp. | life | Category<br>temperature | Rated<br>voltage | ESR | Capacitance<br>range | code | | ze<br>im) | |-------------|-------------|----------------|-------|-------|---------|---------|------|-------------------------|------------------|----------|----------------------|------|------|-----------| | Sei | raic No. | reacures | Small | Large | High ri | High to | Long | range (℃) | range<br>(V) | (mΩ) | (μF) | Size | øD | L | | 7Δ-Δ | EEHAZAB | 105 ℃ 10000 h | | | | | | -55 to 105 | 25 to 80 | 27 to 45 | 22 to 220 | F | 8.0 | 9.5 | | | LENAZA B | 105 € 10000 11 | | | | | | 33 to 103 | 25 10 00 | 20 to 36 | 33 to 330 | G | 10.0 | 9.5 | | 7C-Δ | EEHAZCB | 125 ℃ 4000 h | | | | | • | -55 to 125 | 25 to 80 | 27 to 45 | 22 to 220 | F | 8.0 | 9.5 | | 20 A | LLIIAZC B | 125 C 4000 II | | | | | | 33 to 123 | 25 10 00 | 20 to 36 | 33 to 330 | G | 10.0 | 9.5 | | 7K-Δ | EEHAZKB | 125 ℃ 4000 h | | • | • | | | -55 to 125 | 25 to 35 | 27 | 180 to 270 | F | 8.0 | 9.5 | | | ELITALIN B | 125 C 4000 II | | _ | | | | 33 to 123 | 25 (0 55 | 20 | 330 to 470 | G | 10.0 | 9.5 | | ZKU | EEHAZKUB | 125 ℃ 4000 h | | _ | • | | _ | -55 to 125 | 25 to 35 | 27 | 220 to 330 | F | 8.0 | 9.5 | | -A | LLITAZIK OD | 125 C 4000 II | | | | | | 33 (0 123 | 23 (0 33 | 20 | 390 to 560 | G | 10.0 | 9.5 | | 7T_ | EEHAZTB | 125 ℃ 4000 h | | _ | _ | | _ | -55 to 125 | 25 to 63 | 22 to 32 | 33 to 220 | F | 8.0 | 9.5 | | | LLIIAZI D | 125 C 4000 II | | • | • | | • | 33 to 123 | 23 10 03 | 16 to 25 | 56 to 330 | G | 10.0 | 9.5 | | UPDATE 7C A | EEHAZSB | 125 ℃ 4000 h | | | | | | -55 to 135 | 25 to 63 | 14 to 19 | 100 to 470 | G12 | 10.0 | 11.7 | | 25-A | EENAZSB | 135 ℃ 4000 h | | • | • | | • | -33 to 133 | 23 10 03 | 11 to 15 | 150 to 560 | G16 | 10.0 | 15.7 | | 7011 4 | EEHAZSUB | 125 ℃ 4000 h | | | • | | | -55 to 125 | 25 to 63 | 14 to 19 | 120 to 680 | G12 | 10.0 | 11.7 | | 250-A | EENAZSUD | 125 C 4000 II | | • | • | | • | -55 (0 125 | 25 10 63 | 11 to 15 | 180 to 1000 | G16 | 10.0 | 15.7 | | | EELLAZE D | 145 ℃ 2000 h | | | | | | FF +- 14F | 25 +- 62 | 27 to 40 | 33 to 220 | F | 8.0 | 9.5 | | ZE-A | EEHAZEB | 135 ℃ 4000 h | | | | • | • | -55 to 145 | 25 to 63 | 20 to 30 | 56 to 330 | G | 10.0 | 9.5 | | | EELLAZE D | 150 % 1000 b | | | | | | FF to 1F0 | 2F to C2 | 27 to 40 | 33 to 150 | F | 8.0 | 9.5 | | ZF-A | EEHAZFB | 150 ℃ 1000 h | | | | • | • | -55 to 150 | 25 to 63 | 20 to 30 | 56 to 270 | G | 10.0 | 9.5 | #### Diagram #### Surface mount type #### Radial lead type #### Size · ESR Matrix list #### Surface mount type | V | μF | 10 | 22 | 27 | 33 | 39 | 47 | 56 | 68 | 82 | 100 | 120 | 150 | 180 | 220 | 270 | 330 | 390 | 470 | 560 | 680 | 1000 | |----|-----------|--------|--------|-------|--------|--------|-------|-------|--------|-------|---------|---------|-----------------|---------|---------|---------|---------|-------|----------|---------|---------|---------| | | ZA | | C(80) | | C(80) | | D(50) | | D8(30) | | D8(30) | | F(27) | | F(27) | | G(20) | | | | | | | | ZC<br>ZK | | C(80) | | C(80) | | D(50) | D(50) | D8(30) | D(50) | D8(30) | | F(27)<br>D8(30) | | F(27) | F(27) | G(20) | | G(20) | | | | | | ZKU | | | | | | C(80) | C(80) | D(30) | D(30) | D(50) | | D6(30) | D8(30) | | F(27) | F(27) | | G(20) | G(20) | | | | 25 | ZT | | | | | | | 0(00) | | | 2(30) | | | 20(30) | F(22) | | G(16) | | | 0(20) | | | | 25 | 7S | | | | | | | | | | | | | | | | | | G12(14) | G16(11) | | | | | ZSU | | | | | | | | | | | | | | | | | | | | | G16(11) | | | ZU | | | | | | | | | | | | | | E(27) | | C(20) | | G12(10) | G16(8) | | | | | ZE<br>ZF | | | | | | | | | | | | | | F(27) | G(20) | G(20) | | | | | | | | ZA | C(100) | C(100) | D(60) | D(60) | | D(60) | | D8(35) | | F(27) | | F(27) | | G(20) | G(20) | | | | | | | | | ZC | C(100) | | D(00) | D(60) | | D(60) | | D8(35) | | F(27) | | F(27) | | | G(20) | | | | | | | | | ZK | , , | , , | | C(100) | | | D(60) | ` , | | D8(35) | | , , | F(27) | | | G(20) | | | | | | | | ZKU | | | | | C(100) | | | D(60) | | | D8(35) | | | F(27) | | | G(20) | | | | | | 35 | ZT | | | | | | | | | | | | F(22) | | | G(16) | | | | | | | | 33 | ZS<br>ZSU | | | | | | | | | | | | | | | | G12(14) | | G16(11) | | G16(11) | | | | ZU | | | | | | | | | | | | | | | | G12(11) | | G12 (14) | | G16(11) | | | | ZE | | | | | | | | | | | | F(27) | | | G(20) | 012(11) | | 010(3) | | | | | | ZF | | | | | | | | | | | | G(23) | | | 0(20) | | | | | | | | | ZA | C(120) | | | D8(40) | | F(30) | | F(30) | | G(28) | | , , | | | | | | | | | | | | ZC | C(120) | D(80) | | D8(40) | | F(30) | | F(30) | | G(28) | | | | | | | | | | | | | | ZT | | | | | | | | F(25) | | G(23) | G(23) | | | | | | | | | | | | 50 | ZS<br>ZSU | | | | | | | | | | | | G12(17) | G12(17) | G16(13) | G16(13) | | | | | | | | | ZU | | | | | | | | | | | | G12(12) | G12(17) | G16(10) | | | | | | | | | | ZE | | | | | | | | F(30) | | G(28) | | 012(12) | | 010(10) | | | | | | | | | | ZF | | | | | | | | . (00) | | G(28) | | | | | | | | | | | | | | ZA | D(120) | | | F(40) | | F(40) | | G(30) | G(30) | | | | | | | | | | | | | | | ZC | D(120) | D8(80) | | F(40) | | F(40) | | G(30) | | | | | | | | | | | | | | | | ZT | | | | F(32) | | F(32) | G(25) | G(25) | G(25) | | | | | | | | | | | | | | 63 | ZS<br>ZSU | | | | | | | | | | G12(19) | C12(10) | G16(15) | C1C(1E) | | | | | | | | | | | ZU | | | | | | | | | | G12(12) | G12(19) | G16(10) | G16(15) | | | | | | | | | | | ZE | | | | F(40) | | | G(30) | | G(30) | U12(12) | | 010(10) | | | | | | | | | _ | | | ZF | | | | . ( ) | | | G(30) | | 5(55) | | | | | | | | | | | | | | 80 | ZA | | F(45) | | G(36) | | | | | | | | | | | | | | | | | | | 30 | ZC | | F(45) | | G(36) | | G(36) | | | | | | | | | | | | | | | | Size code (ESR $m\Omega$ ) New Size code D8 Ø6.3 x L7.7 F Ø8.0 x L10.2 G Ø10.0 x L10.2 G12 Ø10.0 x L12.5 G16 Ø10.0 x L16.5 Unit: mm #### Radial lead type ø5.0 x L5.8 ø6.3 x L5.8 | V | μ <b>F</b><br>series | 10 | 22 | 27 | 33 | 39 | 47 | 56 | 68 | 82 | 100 | 120 | 150 | 180 | 220 | 270 | 330 | 390 | 470 | 560 | 680 | 1000 | |----|----------------------|----|-------|----|-------|----|-------|-------|-------|-------|---------|---------|---------|---------|---------|---------|---------|-------|---------|---------|---------|---------| | | ZA | | | | | | | | | | | | F(27) | | F(27) | | G(20) | | | | | | | | ZC | | | | | | | | | | | | F(27) | | F(27) | | G(20) | | | | | | | | ZK | | | | | | | | | | | | | | | F(27) | | | G(20) | | | | | | ZKU | | | | | | | | | | | | | | | | F(27) | | | G(20) | | | | 25 | 7T | | | | | | | | | | | | | | F(22) | | G(16) | | | | | | | | ZS<br>ZSU<br>ZE | | | | | | | | | | | | | | | | | | G12(14) | G16(11) | | | | | ZSU | | | | | | | | | | | | | | | | | | | | G12(14) | G16(11) | | | ZE | | | | | | | | | | | | | | F (27) | | G(20) | | | | | | | | ZF | | | | | | | | | | | | | | | G(20) | | | | | | | | | ZA | | | | | | | | | | F(27) | | F(27) | | G(20) | | | | | | | | | | ZC | | | | | | | | | | F(27) | | F(27) | | G(20) | G(20) | | | | | | | | | ZK | | | | | | | | | | | | | F(27) | | | G(20) | | | | | | | | ZKU | | | | | | | | | | | | | | F(27) | | | G(20) | | | | | | 35 | ZT | | | | | | | | | | | | F(22) | | | G(16) | | | | | | | | | ZS | | | | | | | | | | | | | | | | G12(14) | | G16(11) | | | | | | ZSU | | | | | | | | | | | | | | | | | | G12(14) | | G16(11) | | | | ZE | | | | | | | | | | | | F(27) | | | G(20) | | | | | | | | | ZF | | | | | | | | | | | | G(23) | | | | | | | | | | | | ZA | | | | | | F(30) | | F(30) | | G(28) | | | | | | | | | | | | | | ZC | | | | | | F(30) | | F(30) | | | G(28) | | | | | | | | | | | | | ZT | | | | | | | | F(25) | | G(23) | G(23) | | | | | | | | | | | | 50 | ZS<br>ZSU | | | | | | | | | | | | G12(17) | | G16(13) | | | | | | | | | | ZSU | | | | | | | | | | | | | G12(17) | | G16(13) | | | | | | | | | ZE | | | | | | | | F(30) | | G(28) | | | | | | | | | | | | | | ZF | | | | | | | | | | G(28) | | | | | | | | | | | | | | ZA | | | | F(40) | | F(40) | | | | | | | | | | | | | | | | | | ZC | | | | F(40) | | F(40) | | | | | | | | | | | | | | | | | | ZT | | | | F(32) | | F(32) | G(25) | G(25) | G(25) | | | | | | | | | | | | | | 63 | ZS<br>ZSU | | | | | | | | | | G12(19) | | G16(15) | | | | | | | | | | | | ZSU | | | | | | | | | | | G12(19) | | G16(15) | | | | | | | | | | | ZE | | | | F(40) | | | G(30) | | G(30) | | | | | | | | | | | | | | | ZF | | | | | | | G(30) | | | | | | | | | | | | | | | | 80 | ZA<br>ZC | | F(45) | | G(36) | | | | | | | | | | | | | | | | | | | 80 | ZC | | F(45) | | G(36) | | G(36) | | | | | | | | | | | | | | | | Size code (ESR $m\Omega$ ) Size code F Ø8.0 x L9.5 G Ø10.0 x L9.5 G12 Ø10.0 x L11.7 G16 Ø10.0 x L15.7 Unit: mm New #### **Explanation of part numbers** #### **♦ Part number system** Surface mount type #### **Recommended reflow soldering** | Size code | C, D, D8 | F, G, G12, G16 | | | | | | | |--------------------------|-----------------------|----------------|--------------|--|--|--|--|--| | Peak temp. | 260℃ (255℃) | 245℃ | 260℃ | | | | | | | Time in peak temperature | ≥ 250°C 5 s<br>(10 s) | ≥ 240°C 10 s | ≥ 250°C 5 s | | | | | | | Time | ≥ 230°C 30 s | ≥ 230°C 30 s | ≥ 230°C 30 s | | | | | | | Time<br>maintained | ≥ 217°C 40 s | ≥ 217°C 40 s | ≥ 217°C 40 s | | | | | | | maintaineu | ≧ 200°C 70 s | ≥ 200°C 70 s | ≥ 200°C 70 s | | | | | | | Reflow cycles | 2 times | 2 times | 1 time | | | | | | - \* For reflow, use a thermal condition system such as infrared and radiation (IR) or hot blas. - \* Reflow temperature is measured on capacitor's case top. #### Specifications for radial lead type - Flow soldering condition - < RoHS compliant > | | Temperature | Time | Flow number | |---------------------|---------------------|-----------------------|-------------| | Soldering condition | 260°C + 5°C or less | 10 sec +1 sec or less | 1 time | #### Vibration-proof products The size and shape are different frome standard products. Please inquire details of our company. < Size code : D, D8 > | Supportive terminals | | |----------------------|------------------| | ( | ) Reference size | Unit: mm F Size code øD A, B H max. W L D 6.3 6.1 6.6 7.8 0 to +0.15 0.65±0.1 2.4 D8 6.3 8.0 6.6 7.8 0 to +0.152.4 $0.65 \pm 0.1$ | Size code | Р | K | | R | S | Т | |-----------|-----|------|----------------|---------|-----|----------| | О | 2.2 | 0.35 | +0.15<br>-0.20 | 1.1±0.2 | 3.3 | 1.05±0.2 | | D8 | 2.2 | 0.35 | +0.15<br>-0.20 | 1.1±0.2 | 3.3 | 1.05±0.2 | < Size code : F, G, G12, G16 > Supportive terminals ( )Reference size | | | | | | | | Unit : mm | |-----------|------|------|------|--------|------------|-----|-----------| | Size code | øD | L | A, B | H max. | F | I | W | | F | 8.0 | 10.5 | 8.3 | 10.0 | 0 to +0.15 | 3.4 | 1.2±0.2 | | O | 10.0 | 10.5 | 10.3 | 12.0 | 0 to +0.15 | 3.5 | 1.2±0.2 | | G12 | 10.0 | 12.8 | 10.3 | 11.0*1 | 0 to +0.15 | 3.2 | 1.2±0.2 | | G16 | 10.0 | 16.8 | 10.3 | 11.0*1 | 0 to +0.15 | 3.2 | 1.2±0.2 | | | | | | | | | *1:±0.2 | | Size code | Р | K | R | S | Т | |-----------|-----|----------|----------|-----|---------| | F | 3.1 | 0.70±0.2 | 0.70±0.2 | 5.3 | 1.3±0.2 | | G | 4.6 | 0.70±0.2 | 0.70±0.2 | 6.9 | 1.3±0.2 | | G12 | 4.6 | _ | 0.70±0.2 | 6.9 | 1.3±0.2 | | G16 | 4.6 | _ | 0.70±0.2 | 6.9 | 1.3±0.2 | #### **Mounting specification** #### Land / Pad pattern The circuit board land/pad pattern size for chip capacitors is specified in the following table. The land pitch influences installation strength. #### Standard products | | | | Unit : mm | |----------------|-----|-----|-----------| | Size code | a | b | С | | C : ø5×L5.8 | 1.5 | 2.8 | 1.6 | | D : ø6.3×L5.8 | 1.8 | 3.2 | 1.6 | | D8: ø6.3×L7.7 | 1.8 | 3.2 | 1.6 | | F : ø8×L10.2 | 3.1 | 4.0 | 2.0 | | G : ø10×L10.2 | 4.6 | 4.1 | 2.0 | | G12: ø10×L12.5 | 4.6 | 4.1 | 2.0 | | G16: ø10×L16.5 | 4.6 | 4.1 | 2.0 | When size "a" is wide, back fillet can be made, decreasing fitting strength. \* Take mounting conditions, solderability and fitting strength into consideration when selecting parts for your design. #### Vibration-proof products < Size code : D, D8 > | Size code | Α | В | С | D | |---------------|-----|-----|-----|-----| | D : ø6.3×L6.1 | 1.2 | 3.6 | 3.2 | 2.0 | | D8: ø6.3×L8.0 | 1.2 | 3.6 | 3.2 | 2.0 | | Size code | Е | F | G | Н | |----------------|------|------|-----|-----| | D : ø6.3×L6.1 | 0.95 | 0.65 | 1.0 | 1.2 | | D8 : ø6.3×L8.0 | 0.95 | 0.65 | 1.0 | 1.2 | Larger dimension of "A" may prevent back fillet from being formed adequately to obtain required solder strength. < Size code : F, G, G12, G16 > | | | | | Unit : mm | |----------------|-----|-----|-----|-----------| | Size code | Α | В | С | D | | F : ø8×L10.5 | 2.7 | 4.0 | 4.7 | 1.3 | | G : ø10×L10.5 | 3.9 | 4.4 | 4.7 | 1.3 | | G12: ø10×L12.8 | 3.9 | 4.4 | 4.7 | 1.3 | | G16: ø10×L16.8 | 3.9 | 4.4 | 4.7 | 1.3 | | Size code | Е | F | G | Н | |----------------|-----|-----|-----|-----| | F : ø8×L10.5 | 1.0 | 1.7 | 1.1 | 2.5 | | G : ø10×L10.5 | 1.2 | 1.9 | 1.1 | 2.5 | | G12: ø10×L12.8 | 1.2 | 1.9 | 1.1 | 2.5 | | G16: ø10×L16.8 | 1.2 | 1.9 | 1.1 | 2.5 | When size "A" is wide, back fillet can be made, decreasing fitting strength. - \* Take mounting conditions, solderability and fitting strength into consideration when selecting parts for your design. - \* The vibration-proof capacitors of size Ø6.3 has support terminals extending from the bottom side to the lead edge. Then, make sure to find appropriate soldering conditions to form fillet on the support terminals if required for appearance inspection. #### **Packaging specifications** #### Specifications for surface mount type • Reel dimensions (not to scale) | | Unit : mm | |----------------|-----------| | Size code | W | | С | 14.0 | | D, D8 | 18.0 | | F, G, G12, G16 | 26.0 | Taping dimensions **XAsk factory for technical specifications** ### Radial lead type • Taping dimensions | | | | | | Unit : mm | |-----------|------|------|-----|--------------|-----------| | Size code | øD | L | ød | F | P1 | | F | 8.0 | 9.5 | 0.6 | 3.5±0.5 | 4.60±0.50 | | G | 10.0 | 9.5 | 0.6 | 5.0+0.8/-0.2 | 3.85±0.50 | | G12 | 10.0 | 11.7 | 0.8 | 5.0+0.8/-0.2 | 3.85±0.50 | | G16 | 10.0 | 15.7 | 0.8 | 5.0+0.8/-0.2 | 3.85±0.50 | Dimensions of outer carton box | | | Unit : mm | |----------------|-----|-----------| | Size code | Н | W, L | | С | 220 | 395 | | D, D8 | 250 | 395 | | F, G, G12, G16 | 220 | 395 | #### Min.packing quantity | Size code | Min.packing quantity (pcs.) | |-----------|-----------------------------| | C, D | 1000 | | D8 | 900 | | F, G | 500 | | G12 | 400 | | G16 | 250 | | Unit: | | | | | | | Unit : mm | |-----------|--------|------|------|------|------|------|-----------| | Size code | de A B | | С | D | Р | F | W | | С | 5.7 | 5.7 | 8.0 | 6.4 | 12.0 | 5.5 | 12.0 | | D | 7.0 | 7.0 | 9.0 | 6.4 | 12.0 | 7.5 | 16.0 | | D8 | 7.0 | 7.0 | 9.0 | 8.4 | 12.0 | 7.5 | 16.0 | | F | 8.7 | 8.7 | 12.5 | 11.0 | 16.0 | 11.5 | 24.0 | | G | 10.7 | 10.7 | 14.5 | 11.0 | 16.0 | 11.5 | 24.0 | | G12 | 10.7 | 10.7 | 14.5 | 13.7 | 16.0 | 11.5 | 24.0 | | G16 | 10.7 | 10.7 | 14.5 | 17.5 | 20.0 | 11.5 | 24.0 | Dimensions of outer carton box / Packaging method Zigzag folded | | | | Offic . Iffili | |-----------|----------|----------|----------------| | Size code | W | Н | D | | F | 340 max. | 230 max. | 55 max. | | G | 340 max. | 170 max. | 55 max. | | G12 | 340 max. | 170 max. | 55 max. | | G16 | 340 max. | 170 max. | 55 max. | | | | | | #### Min.packing quantity | Size code | Min.packing quantity (pcs.) | |-----------|-----------------------------| | F | 1000 | | G | 500 | | G12 | 500 | | G16 | 500 | ### **Surface Mount Type** **ZA** series #### High temperature lead-free reflow **Hybrid** #### **Features** - Endurance: 10000 h at 105 ℃ - Low ESR and high ripple current (70 % over, Lower ESR than current V-FP) - High voltage (to 80 V) - Equivalent to conductive polymer type aluminum electrolytic capacitor (There are little characteristics change by temperature and frequency) - Vibration-proof product is available upon request. New lineup of ø6.3 product. (ø6.3, ø8, ø10) - AEC-Q200 compliant - RoHS compliant | Specifications | | | | | | | | | | |-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------|-------------------------------------------------------|------------------|------------------|-----------|----------|--| | Size code | С | | D | D8 | | F | | G | | | Category temp. range | · | | | -55 ℃ to +: | 105 ℃ | | | | | | Rated voltage range | 25 V to 50 V | | | o 63 V | | | V to 80 V | | | | Nominal cap.range | 10 μF to 33 μF | 10 μ | F to 56 μF | 22 μF to 10 | | 2 μF to 220 μF | 33 µF t | o 330 µF | | | Capacitance tolerance | ±20 % (120 Hz / +20 ℃) | | | | | | | | | | DC leakage current | I $\leq$ 0.01 CV or 3 ( $\mu$ A) After 2 minutes (whichever is greater) | | | | | | | | | | Dissipation factor (tan $\delta$ ) | | Please see the attached characteristics list | | | | | | | | | Surge voltage (V) | Rated voltage $\times$ 1.25 (15 °C to 35 °C) +105 °C $\pm$ 2 °C, 10000 h, apply the rated ripple current without exceeding the rated voltage. | | | | | | | | | | | | | | | | ing the rated vi | oltage. | | | | | Capacitance chan | | of the initial v | <i>r</i> alue | | | | | | | | Dissipation factor (ta | an ð) | | he initial limit | | | | | | | Endurance | ESR | | | ≦ 200 % of the initial limit Within the initial limit | | | | | | | | DC leakage curre | nt | | | | | | | | | | ESR after endurance $(\Omega / 100 \text{ kHz})(-40 ^{\circ}\text{C})$ | | Size code | | | | | | | | | | | 2.0 | D<br>1.4 | D8<br>0.8 | F<br>0.4 | 0.3 | | | | | | | | | | | | | | | Shelf life | | | at $+105 $ | | | | | | | | Shell life | (With voltage treatme | | is shall theet t | ile ililiits specii | ilea iii eilaala | ince. | | | | | | +85 °C ± 2 °C, 85 % t | | RH 2000 h ra | ted voltage an | nlied | | | | | | | Capacitance chan | | | of the initial w | | | | | | | Damp heat (Load) | Dissipation factor (ta | | | he initial limit | | | | | | | , , , , , , , , , , , , , , , , , , , , | ESR | | ≦ 200 % of t | he initial limit | | | | | | | | DC leakage curre | nt | Within the in | itial limit | | | | | | | | After reflow soldering | and the | n being stabiliz | zed at +20 ℃, | capacitors sh | all meet the | | | | | Resistance to | following limits. | | - | · | - | | | | | | | Capacitance chan | ge | Within ±10% | of the initial w | alue 💮 | | | | | | soldering heat | Dissipation factor (ta | an δ) | Within the in | itial limit | | | | | | | | DC leakage curre | | Within the in | itial limit | | | | | | #### **Marking** #### Dimensions (not to scale) Н J Κ 50 63 80 **ZA** series #### **Characteristics list** Endurance : 105 ℃ 10000 h | | | | Case size | е | | Spe | cificatio | n | Part n | umber | Min.packaging q'ty (pcs) | |-------------------------|--------------------------------|------|-----------|------------------|--------------|---------------------------------|---------------------------|---------------------|---------------------|----------------------------|--------------------------| | Rated<br>voltage<br>(V) | Capacitance<br>(±20 %)<br>(µF) | øD | Standard | Vibration -proof | Size<br>code | Ripple<br>current*1<br>(mA rms) | ESR <sup>*2</sup><br>(mΩ) | tan δ <sup>*3</sup> | Standard<br>product | Vibration-proof<br>product | Taping | | | 22 | 5.0 | 5.8 | - | C | 900 | 80 | 0.14 | EEHZA1E220R | - | 1000 | | | 33 | 5.0 | 5.8 | - | C | 900 | 80 | 0.14 | EEHZA1E330R | - | 1000 | | | 47 | 6.3 | 5.8 | 6.1 | D | 1300 | 50 | 0.14 | EEHZA1E470P | EEHZA1E470V | 1000 | | | 56 | 6.3 | 5.8 | 6.1 | D | 1300 | 50 | 0.14 | EEHZA1E560P | EEHZA1E560V | 1000 | | 25 | 68 | 6.3 | 7.7 | 8.0 | D8 | 2000 | 30 | 0.14 | EEHZA1E680XP | EEHZA1E680XV | 900 | | | 100 | 6.3 | 7.7 | 8.0 | D8 | 2000 | 30 | 0.14 | EEHZA1E101XP | EEHZA1E101XV | 900 | | | 150 | 8.0 | 10.2 | 10.5 | F | 2300 | 27 | 0.14 | EEHZA1E151P | EEHZA1E151V | 500 | | | 220 | 8.0 | 10.2 | 10.5 | F | 2300 | 27 | 0.14 | EEHZA1E221P | EEHZA1E221V | 500 | | | 330 | 10.0 | 10.2 | 10.5 | G | 2500 | 20 | 0.14 | EEHZA1E331P | EEHZA1E331V | 500 | | | 10 | 5.0 | 5.8 | - | С | 900 | 100 | 0.12 | EEHZA1V100R | - | 1000 | | | 22 | 5.0 | 5.8 | - | C | 900 | 100 | 0.12 | EEHZA1V220R | - | 1000 | | | 27 | 6.3 | 5.8 | 6.1 | D | 1300 | 60 | 0.12 | EEHZA1V270P | EEHZA1V270V | 1000 | | | 33 | 6.3 | 5.8 | 6.1 | D | 1300 | 60 | 0.12 | EEHZA1V330P | EEHZA1V330V | 1000 | | 25 | 47 | 6.3 | 5.8 | 6.1 | D | 1300 | 60 | 0.12 | EEHZA1V470P | EEHZA1V470V | 1000 | | 35 | 68 | 6.3 | 7.7 | 8.0 | D8 | 2000 | 35 | 0.12 | EEHZA1V680XP | EEHZA1V680XV | 900 | | | 100 | 8.0 | 10.2 | 10.5 | F | 2300 | 27 | 0.12 | EEHZA1V101P | EEHZA1V101V | 500 | | | 150 | 8.0 | 10.2 | 10.5 | F | 2300 | 27 | 0.12 | EEHZA1V151P | EEHZA1V151V | 500 | | | 220 | 10.0 | 10.2 | 10.5 | G | 2500 | 20 | 0.12 | EEHZA1V221P | EEHZA1V221V | 500 | | | 270 | 10.0 | 10.2 | 10.5 | G | 2500 | 20 | 0.12 | EEHZA1V271P | EEHZA1V271V | 500 | | | 10 | 5.0 | 5.8 | - | С | 750 | 120 | 0.10 | EEHZA1H100R | - | 1000 | | | 22 | 6.3 | 5.8 | 6.1 | D | 1100 | 80 | 0.10 | EEHZA1H220P | EEHZA1H220V | 1000 | | 50 | 33 | 6.3 | 7.7 | 8.0 | D8 | 1600 | 40 | 0.10 | EEHZA1H330XP | EEHZA1H330XV | 900 | | 50 | 47 | 8.0 | 10.2 | 10.5 | F | 1800 | 30 | 0.10 | EEHZA1H470P | EEHZA1H470V | 500 | | | 68 | 8.0 | 10.2 | 10.5 | F | 1800 | 30 | 0.10 | EEHZA1H680P | EEHZA1H680V | 500 | | | 100 | 10.0 | 10.2 | 10.5 | G | 2000 | 28 | 0.10 | EEHZA1H101P | EEHZA1H101V | 500 | | | 10 | 6.3 | 5.8 | 6.1 | D | 1000 | 120 | 0.08 | EEHZA1J100P | EEHZA1J100V | 1000 | | | 22 | 6.3 | 7.7 | 8.0 | D8 | 1500 | 80 | 0.08 | EEHZA1J220XP | EEHZA1J220XV | 900 | | | 33 | 8.0 | 10.2 | 10.5 | F | 1700 | 40 | 0.08 | EEHZA1J330P | EEHZA1J330V | 500 | | 63 | 47 | 8.0 | 10.2 | 10.5 | F | 1700 | 40 | 0.08 | EEHZA1J470P | EEHZA1J470V | 500 | | | 56 | 10.0 | 10.2 | 10.5 | G | 1800 | 30 | 0.08 | EEHZA1J560P | EEHZA1J560V | 500 | | | 68 | 10.0 | 10.2 | 10.5 | G | 1800 | 30 | 0.08 | EEHZA1J680P | EEHZA1J680V | 500 | | | 82 | 10.0 | 10.2 | 10.5 | G | 1800 | 30 | 0.08 | EEHZA1J820P | EEHZA1J820V | 500 | | | 22 | 8.0 | 10.2 | 10.5 | F | 1550 | 45 | 0.08 | EEHZA1K220P | EEHZA1K220V | 500 | | 80 | 33 | 10.0 | 10.2 | 10.5 | G | 1700 | 36 | 0.08 | EEHZA1K330P | EEHZA1K330V | 500 | | | 47 | 10.0 | 10.2 | 10.5 | G | 1700 | 36 | 0.08 | EEHZA1K470P | EEHZA1K470V | 500 | <sup>\*1:</sup> Ripple current (100 kHz / +105 °C) <sup>◆</sup> The dimensions of the vibration-proof products, please refer to the page of the mounting specification. | Frequency correction factor for ripple current | | | | | | | | |------------------------------------------------|----------------|---------------------|----------------------|-----------------------|---------------------|--|--| | Rated capacitance (C) | Frequency (f) | 100 Hz ≤ f < 200 Hz | 200 Hz ≤ f < 300 Hz | 300 Hz ≤ f < 500 Hz | 500 Hz ≦ f < 1 kHz | | | | C < 47 µF | Correction | 0.10 | 0.10 | 0.15 | 0.20 | | | | 47 μF ≦ C < 150 μF | | 0.15 | 0.20 | 0.25 | 0.30 | | | | 150 μF ≦ C | factor | 0.15 | 0.25 | 0.25 | 0.30 | | | | Rated capacitance (C) | Frequency (f) | 1 kHz ≦ f < 2 kHz | 2 kHz ≦ f < 3 kHz | 3 kHz ≦ f < 5 kHz | 5 kHz ≦ f < 10 kHz | | | | C < 47 µF | Correction | 0.30 | 0.40 | 0.45 | 0.50 | | | | 47 μF ≦ C < 150 μF | | 0.40 | 0.45 | 0.55 | 0.60 | | | | 150 μF ≦ C | factor | 0.45 | 0.50 | 0.60 | 0.65 | | | | Rated capacitance (C) | Frequency (f) | 10 kHz ≦ f < 15 kHz | 15 kHz ≦ f < 20 kHz | 20 kHz ≦ f < 30 kHz | 30 kHz ≦ f < 40 kHz | | | | $C < 47 \mu F$ | rrequericy (1) | 0.60 | 0.65 | 0.70 | 0.75 | | | | 47 μF ≦ C < 150 μF | Correction | 0.70 | 0.05 | 0.80 | 0.75 | | | | 150 uF ≤ C | factor | 0.75 | 0.80 | 0.85 | 0.85 | | | | 130 μι ⊒ C | | 0.73 | 0.80 | 0.65 | 0.83 | | | | Rated capacitance (C) | Frequency (f) | 40 kHz ≦ f < 50 kHz | 50 kHz ≤ f < 100 kHz | 100 kHz ≦ f < 500 kHz | 500 kHz ≦ f | | | | C < 47 µF | Correction | 0.80 | 0.85 | 1.00 | 1.05 | | | | 47 μF ≦ C < 150 μF | | 0.85 | 0.90 | 1.00 | 1.00 | | | | 150 µF ≦ C | factor | 0.85 | 0.90 | 1.00 | 1.00 | | | <sup>\*2:</sup> ESR (100 kHz / +20 °C) <sup>\*3:</sup> tan δ (120 Hz / +20 °C) <sup>◆</sup> Please refer to the page of "Reflow profile" and "The taping dimensions". ### **Surface Mount Type** **ZC** series #### High temperature lead-free reflow **Hybrid** #### **Features** - Endurance: 4000 h at 125 ℃ (High temperature / Long life) - Low ESR and high ripple current (85 % over, Lower ESR than current V-TP) - High-withstand voltage ( to 80 V), Low LC (0.01 CV or 3 μA) - Equivalent to conductive polymer type aluminum electrolytic capacitor (There are little characteristics change by temperature and frequency) - Vibration-proof product is available upon request. New lineup of ø6.3 product. (ø6.3, ø8, ø10) - AEC-Q200 compliant - RoHS compliant | Specifications | | | | | | | | | |------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------|-------------------------|-----------------|--|--| | Size code | С | | D | D8 | F | G | | | | Category temp. range | | | | -55 ℃ to +125 ℃ | | | | | | Rated voltage range | 25 V to 50 V | | 25 V t | :o 63 V | 25 V to 80 V | | | | | Nominal cap.range | 10 μF to 33 μF | 10 L | ıF to 56 μF | 22 μF to 100 μF | 22 μF to 220 μF | 33 μF to 330 μF | | | | Capacitance tolerance | | | | 20 % (120 Hz / +20 °C | | | | | | DC leakage current | | I ≦ ( | | uA) After 2 minutes (w | | | | | | Dissipation factor (tan $\delta$ ) | | | | e the attached characte | | | | | | Surge voltage (V) | | | | oltage × 1.25 (15 ℃ | | | | | | | | | | ple current without exc | eeding the rated voltag | je. | | | | | Capacitance char | | | of the initial value | | | | | | Endurance 1 | Dissipation factor (t | an δ) | | the initial limit | | | | | | | ESR | | | the initial limit | | | | | | | DC leakage curre | nt | Within the in | | | | | | | | | | | ple current without exc | eeding the rated voltag | je. | | | | | Capacitance char | | | of the initial value | | | | | | Endurance 2 | Dissipation factor (t | an δ) | | the initial limit | | | | | | | ESR | | | the initial limit | | | | | | | DC leakage curre | | Within the initial limit | | | | | | | | After storage for 1000 hours at $+125 ^{\circ}\text{C} \pm 2 ^{\circ}\text{C}$ with no voltage applied and then being | | | | | | | | | Shelf life | stabilized at $+20 ^{\circ}$ C, capacitors shall meet the limits specified in endurance. | | | | | | | | | | (With voltage treatment) | | | | | | | | | | +85 °C ± 2 °C, 85 % t | | | | | | | | | | Capacitance char | | Within ±30% of the initial value | | | | | | | Damp heat (Load) | Dissipation factor (t | an ٥) | ≤ 200 % of the initial limit | | | | | | | | ESR | | | the initial limit | | | | | | | | DC leakage current Within the initial limit After reflow soldering and then being stabilized at +20 °C, capacitors shall meet the | | | | | | | | | | and the | n being stabili | zed at +20°C, capacito | rs snall meet the | | | | | Resistance to | following limits. | | \\/:+\a_: 1 0 0 0 | af the initial value | | | | | | soldering heat | Capacitance char | | | of the initial value | | | | | | | Dissipation factor (t | | Within the in | | | | | | | | DC leakage curre | HIL | Within the in | ıcıaı ıiiTIIL | | | | | #### **Marking** ## Example : 25 V 33 µF [Stand ## Marking color : BLACK | R. voltage code | Unit: V | |-----------------|---------| | Е | 25 | | V | 35 | | Н | 50 | | J | 63 | | K | 80 | #### **Dimensions** (not to scale) **ZC** series #### **Characteristics list** Endurance 1 : 125 $^{\circ}$ C 4000 h Endurance 2 : 125 $^{\circ}$ C 3000 h | | | ( | Case size<br>(mm) | е | | | Specif | ication | | Part n | umber | Min.<br>packaging | |-------------------------|--------------------------------|------|-------------------|---------------------|--------------|------|---------------------------|---------------------------|---------------------|---------------------|----------------------------|-------------------| | Rated<br>voltage<br>(V) | Capacitance<br>(±20 %)<br>(µF) | øD | Standard | Vibration<br>-proof | Size<br>code | | urrent *1 rms) Endurance | ESR <sup>*2</sup><br>(mΩ) | tan δ <sup>*3</sup> | Standard<br>product | Vibration-proof<br>product | q'ty (pcs) Taping | | | 22 | 5.0 | 5.8 | _ | С | 550 | _ | 80 | 0.14 | EEHZC1E220R | - | 1000 | | | 33 | 5.0 | 5.8 | - | С | 550 | _ | 80 | 0.14 | EEHZC1E330R | _ | 1000 | | | 47 | 6.3 | 5.8 | 6.1 | D | 900 | - | 50 | 0.14 | EEHZC1E470P | EEHZC1E470V | 1000 | | | 56 | 6.3 | 5.8 | 6.1 | D | 900 | _ | 50 | 0.14 | EEHZC1E560P | EEHZC1E560V | 1000 | | 25 | 68 | 6.3 | 7.7 | 8.0 | D8 | 1400 | - | 30 | 0.14 | EEHZC1E680XP | EEHZC1E680XV | 900 | | | 100 | 6.3 | 7.7 | 8.0 | D8 | 1400 | _ | 30 | 0.14 | EEHZC1E101XP | EEHZC1E101XV | 900 | | | 150 | 8.0 | 10.2 | 10.5 | F | 1600 | 1900 | 27 | 0.14 | EEHZC1E151P | EEHZC1E151V | 500 | | | 220 | 8.0 | 10.2 | 10.5 | F | 1600 | 1900 | 27 | 0.14 | EEHZC1E221P | EEHZC1E221V | 500 | | | 330 | 10.0 | 10.2 | 10.5 | G | 2000 | 2900 | 20 | 0.14 | EEHZC1E331P | EEHZC1E331V | 500 | | | 10 | 5.0 | 5.8 | - | С | 550 | _ | 100 | 0.12 | EEHZC1V100R | _ | 1000 | | | 22 | 5.0 | 5.8 | - | С | 550 | - | 100 | 0.12 | EEHZC1V220R | _ | 1000 | | | 33 | 6.3 | 5.8 | 6.1 | D | 900 | _ | 60 | 0.12 | EEHZC1V330P | EEHZC1V330V | 1000 | | | 47 | 6.3 | 5.8 | 6.1 | D | 900 | - | 60 | 0.12 | EEHZC1V470P | EEHZC1V470V | 1000 | | 35 | 68 | 6.3 | 7.7 | 8.0 | D8 | 1400 | - | 35 | 0.12 | EEHZC1V680XP | EEHZC1V680XV | 900 | | | 100 | 8.0 | 10.2 | 10.5 | F | 1600 | 1900 | 27 | 0.12 | EEHZC1V101P | EEHZC1V101V | 500 | | | 150 | 8.0 | 10.2 | 10.5 | F | 1600 | 1900 | 27 | 0.12 | EEHZC1V151P | EEHZC1V151V | 500 | | | 220 | 10.0 | 10.2 | 10.5 | G | 2000 | 2800 | 20 | 0.12 | EEHZC1V221P | EEHZC1V221V | 500 | | | 270 | 10.0 | 10.2 | 10.5 | G | 2000 | 2800 | 20 | 0.12 | EEHZC1V271P | EEHZC1V271V | 500 | | | 10 | 5.0 | 5.8 | - | С | 500 | - | 120 | 0.10 | EEHZC1H100R | _ | 1000 | | | 22 | 6.3 | 5.8 | 6.1 | D | 750 | - | 80 | 0.10 | EEHZC1H220P | EEHZC1H220V | 1000 | | | 33 | 6.3 | 7.7 | 8.0 | D8 | 1100 | _ | 40 | 0.10 | EEHZC1H330XP | EEHZC1H330XV | 900 | | 50 | 47 | 8.0 | 10.2 | 10.5 | F | 1250 | - | 30 | 0.10 | EEHZC1H470P | EEHZC1H470V | 500 | | | 68 | 8.0 | 10.2 | 10.5 | F | 1250 | - | 30 | 0.10 | EEHZC1H680P | EEHZC1H680V | 500 | | | 100 | 10.0 | 10.2 | 10.5 | G | 1600 | - | 28 | 0.10 | EEHZC1H101P | EEHZC1H101V | 500 | | | 120 | 10.0 | 10.2 | 10.5 | G | 1600 | - | 28 | 0.10 | EEHZC1H121P | EEHZC1H121V | 500 | | | 10 | 6.3 | 5.8 | 6.1 | D | 700 | - | 120 | 0.08 | EEHZC1J100P | EEHZC1J100V | 1000 | | | 22 | 6.3 | 7.7 | 8.0 | D8 | 900 | - | 80 | 0.08 | EEHZC1J220XP | EEHZC1J220XV | 900 | | | 33 | 8.0 | 10.2 | 10.5 | F | 1100 | - | 40 | 0.08 | EEHZC1J330P | EEHZC1J330V | 500 | | 63 | 47 | 8.0 | 10.2 | 10.5 | F | 1100 | - | 40 | 0.08 | EEHZC1J470P | EEHZC1J470V | 500 | | | 56 | 10.0 | 10.2 | 10.5 | G | 1400 | - | 30 | 0.08 | EEHZC1J560P | EEHZC1J560V | 500 | | | 68 | 10.0 | 10.2 | 10.5 | G | 1400 | - | 30 | 0.08 | EEHZC1J680P | EEHZC1J680V | 500 | | | 82 | 10.0 | 10.2 | 10.5 | G | 1400 | - | 30 | 0.08 | EEHZC1J820P | EEHZC1J820V | 500 | | | 22 | 8.0 | 10.2 | 10.5 | F | 1050 | - | 45 | 0.08 | EEHZC1K220P | EEHZC1K220V | 500 | | 80 | 33 | 10.0 | 10.2 | 10.5 | G | 1360 | - | 36 | 0.08 | EEHZC1K330P | EEHZC1K330V | 500 | | | 47 | 10.0 | 10.2 | 10.5 | G | 1360 | - | 36 | 0.08 | EEHZC1K470P | EEHZC1K470V | 500 | <sup>\*1:</sup> Ripple current (100 kHz / +125 °C) ♦ The dimensions of the vibration-proof products, please refer to the page of the mounting specification. | Frequency correction factor for ripple current | | | | | | | | |------------------------------------------------|----------------|---------------------|----------------------|-----------------------|---------------------|--|--| | Rated capacitance (C) | Frequency (f) | 100 Hz ≤ f < 200 Hz | 200 Hz ≤ f < 300 Hz | 300 Hz ≤ f < 500 Hz | 500 Hz ≦ f < 1 kHz | | | | C < 47 µF | Correction | 0.10 | 0.10 | 0.15 | 0.20 | | | | 47 μF ≦ C < 150 μF | | 0.15 | 0.20 | 0.25 | 0.30 | | | | 150 μF ≦ C | factor | 0.15 | 0.25 | 0.25 | 0.30 | | | | Rated capacitance (C) | Frequency (f) | 1 kHz ≦ f < 2 kHz | 2 kHz ≦ f < 3 kHz | 3 kHz ≦ f < 5 kHz | 5 kHz ≦ f < 10 kHz | | | | C < 47 µF | Correction | 0.30 | 0.40 | 0.45 | 0.50 | | | | 47 μF ≦ C < 150 μF | | 0.40 | 0.45 | 0.55 | 0.60 | | | | 150 μF ≦ C | factor | 0.45 | 0.50 | 0.60 | 0.65 | | | | Rated capacitance (C) | Frequency (f) | 10 kHz ≦ f < 15 kHz | 15 kHz ≦ f < 20 kHz | 20 kHz ≤ f < 30 kHz | 30 kHz ≤ f < 40 kHz | | | | C < 47 µF | Correction | 0.60 | 0.65 | 0.70 | 0.75 | | | | 47 μF ≦ C < 150 μF | | 0.70 | 0.75 | 0.80 | 0.80 | | | | 150 μF ≦ C | factor | 0.75 | 0.80 | 0.85 | 0.85 | | | | Rated capacitance (C) | Frequency (f) | 40 kHz ≦ f < 50 kHz | 50 kHz ≦ f < 100 kHz | 100 kHz ≦ f < 500 kHz | 500 kHz ≦ f | | | | $C < 47 \mu F$ | rrequericy (1) | 0.80 | 0.85 | 1.00 | 1.05 | | | | 47 μF ≦ C < 150 μF | Correction | 0.85 | 0.83 | 1.00 | 1.00 | | | | 47 μF ≦ C < 130 μF<br>150 μF ≦ C | factor | 0.85 | 0.90 | 1.00 | 1.00 | | | | After endurance ESR (100 kHz, -40℃) | | | | | | | | | |-------------------------------------|---|-----|-----|-----|-----|--|--|--| | Size code | С | D | D8 | F | G | | | | | ESR $(\Omega)$ | 2 | 1.4 | 0.8 | 0.4 | 0.3 | | | | <sup>\*2:</sup> ESR (100 kHz / +20 $^{\circ}$ C) <sup>\*3:</sup> tan δ (120 Hz / +20 °C) <sup>◆</sup> Please refer to the page of "Reflow profile" and "The taping dimensions". ## **Surface Mount Type** **ZK** series #### High temperature lead-free reflow **Hybrid** #### **Features** - High capacitance and High ripple current compared with ZC series - Endurance : 4000 h at 125 °C (High temperature / Long life) - Low ESR (85 % over, Lower ESR than Current V-TP), Low LC (0.01 CV or 3 μA) - Equivalent to conductive polymer type Aluminum Electrolytic Capacitor (There are little characteristics change by temperature and frequency) - Vibration-proof product is available upon request. New lineup of ø6.3 product. (ø6.3, ø8, ø10) - AEC-Q200 compliant - RoHS compliant | Specifications | | | | | | | | | | | |------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------|-----------------|---------|---------|---------------|-------------|-----------|--| | Size code | С | | D | D8 | | | F | | G | | | Category temp. range | | | | -55 ℃ to + | 125 ℃ | | | | | | | Rated voltage range | | | | 25 V to 3 | 35 V | | | | | | | Nominal cap.range | 33 μF to 47 μF | 56 μF | to 82 μF | 100 μF to 1 | .50 μF | 180 | μF to 270 μl | F 330 μF | to 470 μF | | | Capacitance tolerance | ±20 % (120 Hz / +20 ℃) | | | | | | | | | | | DC leakage current | | I ≤ 0.01 | | A) After 2 mii | | | | r) | | | | Dissipation factor (tan $\delta$ ) | | | | the attached | | | | | | | | Surge voltage (V) | | Rated voltage $\times$ 1.25 (15 $^{\circ}$ C to 35 $^{\circ}$ C) | | | | | | | | | | | +125 | | | | | excee | ding the rate | ed voltage. | | | | | Capacitance chan | J - | | % of the initia | | | | | | | | | Dissipation factor (ta | | | the initial lim | | | | | | | | Endurance | ESR | | ≤ 200 % of the initial limit | | | | | | | | | Lituatance | DC leakage curre | nt ' | Within the ir | nitial limit | | | | | | | | | ESR after enduran | nce | | | Size co | ode | | | | | | | (Ω / 100 kHz)(-40 °C) | | С | D | D8 | | F | G | | | | | , , | | 2.0 | 1.4 | 0.8 | | 0.4 | 0.3 | | | | | After storage for 1000 hours at $+125 ^{\circ}\text{C} \pm 2 ^{\circ}\text{C}$ with no voltage applied and then being | | | | | | | | | | | Shelf life | stabilized at $+20$ °C, capacitors shall meet the limits specified in endurance. | | | | | | | | | | | | (With voltage treatment) | | | | | | | | | | | | +85 °C ± 2 °C, 85 % | | | | | i | | | | | | | Capacitance chan | | | % of the initia | | | | | | | | Damp heat (Load) | Dissipation factor (ta | | | the initial lim | - | | | | | | | | ESR | | | the initial lim | it | | | | | | | | DC leakage curre | | Within the in | | | | | | | | | | After reflow soldering | and the | en being stal | bilized at +20 | °C, cap | acitors | shall meet | the | | | | Resistance to | following limits. | | | | | | | | | | | soldering heat | Capacitance chan | | | % of the initia | I value | | | | | | | soldering neat | Dissipation factor (ta | - / | Within the ir | | | | | | | | | | DC leakage curre | nt ' | Within the ir | nitial limit | | | | | | | #### **Marking** #### **Dimensions** (not to scale) **ZK** series #### **Characteristics list** Endurance : 125 ℃ 4000 h | | | | Case size (mm) | е | | Specification | | | Part n | umber | Min.packaging q'ty (pcs) | |---------------|------|------|----------------|---------------------|--------------|-----------------------------------|-------|---------------------|--------------|-----------------|--------------------------| | Rated voltage | | | L | | Size<br>code | Ripple | ESR*2 | *2 | Standard | Vibration-proof | | | (V) | (µF) | øD | Standard | Vibration<br>-proof | | current <sup>*1</sup><br>(mA rms) | (mΩ) | tan δ <sup>*3</sup> | product | product | Taping | | | 47 | 5.0 | 5.8 | - | С | 850 | 80 | 0.14 | EEHZK1E470R | _ | 1000 | | | 68 | 6.3 | 5.8 | 6.1 | D | 1300 | 50 | 0.14 | EEHZK1E680P | EEHZK1E680V | 1000 | | 25 | 82 | 6.3 | 5.8 | 6.1 | D | 1300 | 50 | 0.14 | EEHZK1E820P | EEHZK1E820V | 1000 | | 25 | 150 | 6.3 | 7.7 | 8.0 | D8 | 1800 | 30 | 0.14 | EEHZK1E151XP | EEHZK1E151XV | 900 | | | 270 | 8.0 | 10.2 | 10.5 | F | 2000 | 27 | 0.14 | EEHZK1E271P | EEHZK1E271V | 500 | | | 470 | 10.0 | 10.2 | 10.5 | G | 2800 | 20 | 0.14 | EEHZK1E471P | EEHZK1E471V | 500 | | | 33 | 5.0 | 5.8 | - | С | 750 | 100 | 0.12 | EEHZK1V330R | _ | 1000 | | | 56 | 6.3 | 5.8 | 6.1 | D | 1200 | 60 | 0.12 | EEHZK1V560P | EEHZK1V560V | 1000 | | 35 | 100 | 6.3 | 7.7 | 8.0 | D8 | 1700 | 35 | 0.12 | EEHZK1V101XP | EEHZK1V101XV | 900 | | | 180 | 8.0 | 10.2 | 10.5 | F | 2000 | 27 | 0.12 | EEHZK1V181P | EEHZK1V181V | 500 | | | 330 | 10.0 | 10.2 | 10.5 | G | 2800 | 20 | 0.12 | EEHZK1V331P | EEHZK1V331V | 500 | <sup>\*1:</sup> Ripple current (100 kHz / +125 ℃) <sup>◆</sup> The dimensions of the vibration-proof products, please refer to the page of the mounting specification. | Frequency co | orrection | factor for ripp | le current | | | |-----------------------|-------------------|---------------------|----------------------|-----------------------|---------------------| | Rated capacitance (C) | Frequency (f) | 100 Hz ≤ f < 200 Hz | 200 Hz ≤ f < 300 Hz | 300 Hz ≤ f < 500 Hz | 500 Hz ≤ f < 1 kHz | | C < 47 µF | | 0.15 | 0.20 | 0.25 | 0.35 | | 47 μF ≦ C < 100 μF | Correction factor | 0.15 | 0.25 | 0.30 | 0.40 | | 100 µF ≦ C | lactor | 0.15 | 0.25 | 0.30 | 0.40 | | | | | | | | | Rated capacitance (C) | Frequency (f) | 1 kHz ≦ f < 2 kHz | 2 kHz ≦ f < 3 kHz | 3 kHz ≦ f < 5 kHz | 5 kHz ≦ f < 10 kHz | | C < 47 μF | | 0.45 | 0.55 | 0.60 | 0.65 | | 47 μF ≦ C < 100 μF | Correction factor | 0.50 | 0.60 | 0.65 | 0.70 | | 100 μF ≦ C | lactor | 0.50 | 0.60 | 0.65 | 0.70 | | | | | | | | | Rated capacitance (C) | Frequency (f) | 10 kHz ≦ f < 15 kHz | 15 kHz ≦ f < 20 kHz | 20 kHz ≦ f < 30 kHz | 30 kHz ≦ f < 40 kHz | | C < 47 µF | | 0.70 | 0.75 | 0.75 | 0.75 | | 47 μF ≦ C < 100 μF | Correction factor | 0.75 | 0.75 | 0.80 | 0.80 | | 100 μF ≦ C | lactor | 0.75 | 0.80 | 0.85 | 0.85 | | | | | | | | | Rated capacitance (C) | Frequency (f) | 40 kHz ≦ f < 50 kHz | 50 kHz ≦ f < 100 kHz | 100 kHz ≦ f < 500 kHz | 500 kHz ≦ f | | C < 47 µF | | 0.80 | 0.85 | 1.00 | 1.05 | | 47 μF ≤ C < 100 μF | Correction factor | 0.85 | 0.90 | 1.00 | 1.00 | | 100 µF ≦ C | Tactor | 0.85 | 0.90 | 1.00 | 1.00 | <sup>\*2:</sup> ESR (100 kHz / +20 ℃) <sup>\*3:</sup> tan δ (120 Hz / +20 °C) <sup>◆</sup> Please refer to the page of "Reflow profile" and "The taping dimensions". ### **Surface Mount Type** **ZKU** series High temperature lead-free reflow **Hybrid** #### **Features** - Endurance : 4000 h at 125 ℃ (High temperature / Long life) - Large capacitance compared with ZK series - Low ESR (85 % over, Lower ESR than Current V-TP), Low LC (0.01 CV or 3 μA) - Equivalent to conductive polymer type Aluminum Electrolytic Capacitor (There are little characteristics change by temperature and frequency) - Vibration-proof product is available upon request. (ø6.3, ø8, ø10) - AEC-Q200 compliant - RoHS compliant | Specifications | | | | | | | | | | |------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------|---------------|----------------|------------------|--|--|--| | Size code | С | D | D8 | | F | G | | | | | Category temp. range | | | -55 ℃ to +1 | .25 ℃ | | <u> </u> | | | | | Rated voltage range | | | 25 V to 3 | | | _ | | | | | Nominal cap.range | 39 μF to 56 μF 6 | 8 μF to 100 μF | 120 μF to 18 | 80 μF 220 | 0 μF to 330 μF | 390 μF to 560 μF | | | | | Capacitance tolerance | | ± | 20 % (120 Hz | / +20 ℃) | | | | | | | DC leakage current | I : | ≦ 0.01 CV or 3 (μ | | | | | | | | | Dissipation factor (tan $\delta$ ) | | Please see | e the attached | characteristi | cs list | | | | | | Surge voltage (V) | | Rated voltage $\times$ 1.25 (15 $^{\circ}$ C to 35 $^{\circ}$ C) | | | | | | | | | | $+125~\%~\pm~2~\%~4000~h$ , apply the rated ripple current without exceeding the rated voltage. | | | | | | | | | | | Capacitance change | | % of the initial | | | | | | | | | Dissipation factor (tan | | the initial limit | | | | | | | | Endurance | ESR | ≤ 200 % of | the initial limit | - | | | | | | | Litatiance | DC leakage current | Within the i | nitial limit | | | | | | | | | ESR after endurance | | Size code | | | | | | | | | (Ω / 100 kHz)(-40 °C) | С | D | D8 | F | G | | | | | | , , , , , , , | 2.0 | 1.4 | 0.8 | 0.4 | 0.3 | | | | | | After storage for 1000 hours at +125 $^{\circ}$ C ± 2 $^{\circ}$ C with no voltage applied and then being | | | | | | | | | | Shelf life | stabilized at $+20 ^{\circ}$ C, capacitors shall meet the limits specified in endurance. | | | | | | | | | | | (With voltage treatment | , | | | | | | | | | | $+85 \% \pm 2 \%$ , 85 % to | | | | | | | | | | | Capacitance change | Within ±30 | Within ±30% of the initial value | | | | | | | | Damp heat (Load) | Dissipation factor (tan | $\delta$ ) $\leq 200 \%$ of | the initial limit | | | | | | | | | ESR | ≤ 200 % of | the initial limit | | | | | | | | | DC leakage current | Within the i | nitial limit | | | · | | | | #### **Marking** Negative polarity marking (-) | R. voltage code | e Unit : V | |-----------------|------------| | Е | 25 | | V | 35 | #### **Dimensions (not to scale)** | | | | | | | | | Unit : mm | |------|------|----------|------|-----------|-----|----------|-----|------------| | Size | øD | L | A, B | H<br>max. | I | W | Р | K | | С | 5.0 | 5.8±0.3 | 5.3 | 6.5 | 2.2 | 0.65±0.1 | 1.5 | 0.35 +0.15 | | D | 6.3 | 5.8±0.3 | 6.6 | 7.8 | 2.6 | 0.65±0.1 | 1.8 | 0.35 +0.15 | | D8 | 6.3 | 7.7±0.3 | 6.6 | 7.8 | 2.6 | 0.65±0.1 | 1.8 | 0.35 +0.15 | | F | 8.0 | 10.2±0.3 | 8.3 | 10 | 3.4 | 0.90±0.2 | 3.1 | 0.70±0.2 | | G | 10.0 | 10.2±0.3 | 10.3 | 12.0 | 3.5 | 0.90±0.2 | 4.6 | 0.70±0.2 | | | | | | | | | | | | | | Unit : mm | |-----------|------|----------|------|-----------|------------|-----|----------|-----|------------------|----------|-----|-----------| | Size code | øD | L | А, В | H<br>max. | F | I | W | Р | K | R | S | Т | | D | 6.3 | 6.1±0.3 | 6.6 | 7.8 | 0 to +0.15 | 2.4 | 0.65±0.1 | 2.2 | 0.35 +0.15 -0.20 | 1.1±0.2 | 3.3 | 1.05±0.2 | | D8 | 6.3 | 8.0±0.3 | 6.6 | 7.8 | 0 to +0.15 | 2.4 | 0.65±0.1 | 2.2 | 0.35 +0.15 -0.20 | 1.1±0.2 | 3.3 | 1.05±0.2 | | F | 8.0 | 10.5±0.3 | 8.3 | 10.0 | 0 to +0.15 | 3.4 | 1.2±0.2 | 3.1 | 0.70±0.2 | 0.70±0.2 | 5.3 | 1.3±0.2 | | G | 10.0 | 10.5±0.3 | 10.3 | 12.0 | 0 to +0.15 | 3.5 | 1.2±0.2 | 4.6 | 0.70±0.2 | 0.70±0.2 | 6.9 | 1.3±0.2 | **ZKU** series #### **Characteristics list** Endurance : 125 ℃ 4000 h | | | | Case size (mm) | е | | Spe | cificatio | n | Part r | umber | Min.packaging<br>q'ty (pcs) | |--------------------------------------------|-----|-----|----------------|----------------------------|----|---------------------------------------------|------------------------|---------------------|---------------------|----------------------------|-----------------------------| | Rated Capacitance voltage (±20 %) (V) (µF) | , | øD | Standard | Size code Vibration -proof | | Ripple<br>current <sup>*1</sup><br>(mA rms) | ESR <sup>*2</sup> (mΩ) | tan δ <sup>*3</sup> | Standard<br>product | Vibration-proof<br>product | Taping | | | 56 | 5 | 5.8 | _ | С | 850 | 80 | 0.14 | EEHZK1E560UR | _ | 1000 | | | 100 | 6.3 | 5.8 | 6.1 | D | 1300 | 50 | 0.14 | EEHZK1E101UP | EEHZK1E101UV | 1000 | | | 100 | | | _ | _ | | | 0.14 | | EEHZKIEIUIUV | | | 25 | 180 | 6.3 | 7.7 | 8.0 | D8 | 1800 | 30 | 0.14 | EEHZKE181XUP | EEHZKE181XUV | 900 | | | 330 | 8 | 10.2 | 10.5 | F | 2000 | 27 | 0.14 | EEHZK1E331UP | EEHZK1E331UV | 500 | | | 560 | 10 | 10.2 | 10.5 | G | 2800 | 20 | 0.14 | EEHZK1E561UP | EEHZK1E561UV | 500 | | | 39 | 5 | 5.8 | - | С | 750 | 100 | 0.12 | EEHZK1V390UR | - | 1000 | | | 68 | 6.3 | 5.8 | 6.1 | D | 1200 | 60 | 0.12 | EEHZK1V680UP | EEHZK1V680UV | 1000 | | 35 | 120 | 6.3 | 7.7 | 8.0 | D8 | 1700 | 35 | 0.12 | EEHZKV121XUP | EEHZKV121XUV | 900 | | | 220 | 8 | 10.2 | 10.5 | F | 2000 | 27 | 0.12 | EEHZK1V221UP | EEHZK1V221UV | 500 | | | 390 | 10 | 10.2 | 10.5 | G | 2800 | 20 | 0.12 | EEHZK1V391UP | EEHZK1V391UV | 500 | <sup>\*1:</sup> Ripple current (100 kHz / +125 ℃) <sup>♦</sup> The dimensions of the vibration-proof products, please refer to the page of the mounting specification. | Frequency co | orrection | factor for ripp | le current | | | |-----------------------|-------------------|---------------------|----------------------|-----------------------|---------------------| | Rated capacitance (C) | Frequency(f) | 100 Hz ≤ f < 200 Hz | 200 Hz ≤ f < 300 Hz | 300 Hz ≤ f < 500 Hz | 500 Hz ≤ f < 1 kHz | | C < 47 µF | C | 0.15 | 0.20 | 0.25 | 0.35 | | 47 μF ≦ C < 100 μF | Correction factor | 0.15 | 0.25 | 0.30 | 0.40 | | 100 μF ≦ C | lactor | 0.15 | 0.25 | 0.30 | 0.40 | | | | | | | | | Rated capacitance (C) | Frequency(f) | 1 kHz ≦ f < 2 kHz | 2 kHz ≦ f < 3 kHz | 3 kHz ≦ f < 5 kHz | 5 kHz ≤ f < 10 kHz | | C < 47 μF | 6 | 0.45 | 0.55 | 0.60 | 0.65 | | 47 μF ≦ C < 100 μF | Correction factor | 0.50 | 0.60 | 0.65 | 0.70 | | 100 μF ≦ C | lactor | 0.50 | 0.60 | 0.65 | 0.70 | | | | | | | | | Rated capacitance (C) | Frequency(f) | 10 kHz ≦ f < 15 kHz | 15 kHz ≦ f < 20 kHz | 20 kHz ≤ f < 30 kHz | 30 kHz ≦ f < 40 kHz | | C < 47 µF | 6 | 0.70 | 0.75 | 0.75 | 0.75 | | 47 μF ≦ C < 100 μF | Correction factor | 0.75 | 0.75 | 0.80 | 0.80 | | 100 μF ≦ C | lactor | 0.75 | 0.80 | 0.85 | 0.85 | | | | | | | | | Rated capacitance (C) | Frequency(f) | 40 kHz ≤ f < 50 kHz | 50 kHz ≦ f < 100 kHz | 100 kHz ≦ f < 500 kHz | 500 kHz ≦ f | | C < 47 µF | C | 0.80 | 0.85 | 1.00 | 1.05 | | 47 μF ≦ C < 100 μF | Correction factor | 0.85 | 0.90 | 1.00 | 1.00 | | 100 μF ≦ C | Tuctor | 0.85 | 0.90 | 1.00 | 1.00 | <sup>\*2:</sup> ESR (100 kHz / +20 ℃) <sup>\*3:</sup> tan δ (120 Hz / +20 °C) <sup>◆</sup> Please refer to the page of "Reflow profile" and "The taping dimensions". ## **Surface Mount Type** **ZT** series #### High temperature lead-free reflow #### **Features** - Endurance: 4000 h at 125 ℃ - Higher ripple current (75 % to 118 % higher than ZC series) - Vibration-proof product is available upon request. - AEC-Q200 compliant - RoHS compliant | Specifications | | | | | | | | |------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--|--|--|--|--| | Size code | F | G | | | | | | | Category temp. range | | -55 ℃ to +125 ℃ | | | | | | | Rated voltage range | | 25 V to 63 V | | | | | | | Nominal cap.range | 33 μF to 2 | 20 μF 56 μF to 330 μF | | | | | | | Capacitance tolerance | | ±20 % (120 Hz / +20 ℃) | | | | | | | DC leakage current | | $I \leq 0.01 \text{ CV } (\mu A) \text{ After 2 minutes}$ | | | | | | | Dissipation factor (tan $\delta$ ) | | Please see the attached characteristics list | | | | | | | Surge voltage (V) | | Rated voltage $\times$ 1.25 (15 $^{\circ}$ C to 35 $^{\circ}$ C) | | | | | | | | | ply the rated ripple current without exceeding the rated voltage | | | | | | | | Capacitance change | Within ±30% of the initial value | | | | | | | | Dissipation factor (tan $\delta$ ) | ≤ 200 % of the initial limit | | | | | | | Endurance | E.S.R. | ≤ 200 % of the initial limit | | | | | | | Endurance | DC leakage current | Within the initial limit | | | | | | | | ESR after endurance | Size code | | | | | | | | (Ω / 100 kHz)(-40 °C) | F G | | | | | | | | , , , , , , , , , , , , , , , , , , , , | 0.4 0.3 | | | | | | | | After storage for 1000 hours at +125 $^{\circ}$ C ± 2 $^{\circ}$ C with no voltage applied and then being | | | | | | | | Shelf life | stabilized at $+20$ °C, capacitors shall meet the limits specified in endurance. | | | | | | | | | (With voltage treatment) | | | | | | | | | | RH, 2000 h, rated voltage applied | | | | | | | Damp heat | Capacitance change | Within ±30% of the initial value | | | | | | | (Load) | Dissipation factor (tan $\delta$ ) | | | | | | | | (====) | E.S.R. | ≤ 200 % of the initial limit | | | | | | | | DC leakage current | Within the initial limit | | | | | | | | | hen being stabilized at +20 ℃, capacitors shall meet the | | | | | | | Resistance to | following limits. | TWOLE 1400/ CIL : 1: L L | | | | | | | soldering heat | Capacitance change | Within ±10% of the initial value | | | | | | | | Dissipation factor (tan δ) | Within the initial limit | | | | | | | | DC leakage current | Within the initial limit | | | | | | #### **Marking** ## Dimensions (not to scale) **ZT** series #### **Characteristics list** Endurance : 125 ℃ 4000 h | | | | Case size (mm) | 9 | | Spe | cificatio | n | Part n | umber | Min.packaging q'ty (pcs) | |-----------------------------------|------|------|----------------|----------------------------|------|---------------------|-----------|---------|-------------|-----------------|--------------------------| | Rated Capacitance voltage (±20 %) | | | I | _ | Size | Ripple | ESR*2 | *2 | Standard | Vibration-proof | | | (V) | (µF) | øD | Standard | Vibration current (mO) | | tan δ <sup>*3</sup> | product | product | Taping | | | | 25 | 220 | 8.0 | 10.2 | 10.5 | F | 2900 | 22 | 0.14 | EEHZT1E221P | EEHZT1E221V | 500 | | 23 | 330 | 10.0 | 10.2 | 10.5 | G | 3500 | 16 | 0.14 | EEHZT1E331P | EEHZT1E331V | 500 | | 35 | 150 | 8.0 | 10.2 | 10.5 | F | 2900 | 22 | 0.12 | EEHZT1V151P | EEHZT1V151V | 500 | | 33 | 270 | 10.0 | 10.2 | 10.5 | G | 3500 | 16 | 0.12 | EEHZT1V271P | EEHZT1V271V | 500 | | | 68 | 8.0 | 10.2 | 10.5 | F | 2700 | 25 | 0.10 | EEHZT1H680P | EEHZT1H680V | 500 | | 50 | 100 | 10.0 | 10.2 | 10.5 | G | 2900 | 23 | 0.10 | EEHZT1H101P | EEHZT1H101V | 500 | | | 120 | 10.0 | 10.2 | 10.5 | G | 2900 | 23 | 0.10 | EEHZT1H121P | EEHZT1H121V | 500 | | | 33 | 8.0 | 10.2 | 10.5 | F | 2400 | 32 | 0.08 | EEHZT1J330P | EEHZT1J330V | 500 | | | 47 | 8.0 | 10.2 | 10.5 | F | 2400 | 32 | 0.08 | EEHZT1J470P | EEHZT1J470V | 500 | | 63 | 56 | 10.0 | 10.2 | 10.5 | G | 2800 | 25 | 0.08 | EEHZT1J560P | EEHZT1J560V | 500 | | | 68 | 10.0 | 10.2 | 10.5 | G | 2800 | 25 | 0.08 | EEHZT1J680P | EEHZT1J680V | 500 | | | 82 | 10.0 | 10.2 | 10.5 | G | 2800 | 25 | 0.08 | EEHZT1J820P | EEHZT1J820V | 500 | <sup>\*1:</sup> Ripple current (100 kHz / +125 $^{\circ}$ C) <sup>◆</sup> Please refer to the page of "Reflow profile" and "The taping dimensions". | ▼ Please Telef to the page of Reflow profile and The taping differsions . | | | | | | | | | | | | | |---------------------------------------------------------------------------|------------------------------------------------|---------------------|----------------------|-------------------------------------------|---------------------|--|--|--|--|--|--|--| | Frequency of | Frequency correction factor for ripple current | | | | | | | | | | | | | Rated capacitance (C) | Frequency (f) | 100 Hz ≤ f < 200 Hz | 200 Hz ≤ f < 300 Hz | 300 Hz ≤ f < 500 Hz | 500 Hz ≦ f < 1 kHz | | | | | | | | | C < 47 μF | Correction | 0.10 | 0.10 | 0.15 | 0.20 | | | | | | | | | 47 μF ≦ C < 150 μF | factor | 0.15 | 0.20 | 0.25 | 0.30 | | | | | | | | | 150 μF ≦ C | Tactor | 0.15 | 0.25 | 0.25 | 0.30 | | | | | | | | | | | | | | | | | | | | | | | Rated capacitance (C) | Frequency (f) | 1 kHz ≦ f < 2 kHz | 2 kHz ≤ f < 3 kHz | $3 \text{ kHz} \leq f < 5 \text{ kHz}$ | 5 kHz ≦ f < 10 kHz | | | | | | | | | $C < 47 \mu F$ | Correction | 0.30 | 0.40 | 0.45 | 0.50 | | | | | | | | | 47 μF ≦ C < 150 μF | factor | 0.40 | 0.45 | 0.55 | 0.60 | | | | | | | | | 150 μF ≦ C | ractor | 0.45 | 0.50 | 0.60 | 0.65 | | | | | | | | | | | | | | | | | | | | | | | Rated capacitance (C) | Frequency (f) | 10 kHz ≦ f < 15 kHz | 15 kHz ≦ f < 20 kHz | 20 kHz ≤ f < 30 kHz | 30 kHz ≦ f < 40 kHz | | | | | | | | | C < 47 μF | Correction | 0.60 | 0.65 | 0.70 | 0.75 | | | | | | | | | 47 μF ≦ C < 150 μF | factor | 0.70 | 0.75 | 0.80 | 0.80 | | | | | | | | | 150 μF ≦ C | ractor | 0.75 | 0.80 | 0.85 | 0.85 | | | | | | | | | | | | | | | | | | | | | | | Rated capacitance (C) | Frequency (f) | 40 kHz ≦ f < 50 kHz | 50 kHz ≤ f < 100 kHz | $100 \text{ kHz} \le f < 500 \text{ kHz}$ | 500 kHz ≦ f | | | | | | | | | C < 47 µF | Correction | 0.80 | 0.85 | 1.00 | 1.05 | | | | | | | | | 47 μF ≦ C < 150 μF | factor | 0.85 | 0.90 | 1.00 | 1.00 | | | | | | | | | 150 μF ≦ C | ractor | 0.85 | 0.90 | 1.00 | 1.00 | | | | | | | | <sup>\*2:</sup> ESR (100 kHz / +20 ℃) <sup>\*3:</sup> tan $\delta$ (120 Hz / +20 °C) UPDATE ## **Surface Mount Type** **ZS** series #### High temperature lead-free reflow **Hybrid** #### **Features** - Endurance: 4000 h at 135 ℃ - High ripple current and High capacitance - High-withstand voltage (to 63 V), Low leakage current (0.01 CV or 3 μF) - $\bullet$ Vibration-proof product is available upon request. - AEC-Q200 compliant - RoHS compliant | Specifications | | | | | | | | |------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------|--|--|--|--| | Size code | G12 | | G16 | | | | | | Category temp. range | | -55 ℃ to | ) +135 ℃ | | | | | | Rated voltage range | | | to 63 V | | | | | | Nominal cap.range | 100 µF to 4 | | 150 μF to 560 μF | | | | | | Capacitance tolerance | | | Hz / +20 ℃) | | | | | | DC leakage current | $I \leq 0$ . | | minutes (whichever is greater) | | | | | | Dissipation factor (tan $\delta$ ) | | | ned characteristics list | | | | | | Surge voltage (V) | | | 25 (15 ℃ to 35 ℃) | | | | | | | | | ent without exceeding the rated voltage. | | | | | | | Capacitance change | Within ±30% of the in | | | | | | | Endurance 1 | Dissipation factor (tan $\delta$ ) | ≤ 200 % of the initial I | | | | | | | | E.S.R. | ≤ 200 % of the initial I | imit | | | | | | | DC leakage current | Within the initial limit | | | | | | | | | | ent without exceeding the rated voltage. | | | | | | - 1 | Capacitance change Within ±30% of the initial value | | | | | | | | Endurance 2 | Dissipation factor (tan $\delta$ ) | $\leq$ 200 % of the initial I | - | | | | | | | E.S.R. | ≤ 200 % of the initial I | imit | | | | | | | DC leakage current | Within the initial limit | no voltage applied and then being | | | | | | Shelf life | After storage for 1000 hours at $+135 ^{\circ}\text{C} \pm 2 ^{\circ}\text{C}$ with no voltage applied and then being stabilized at $+20 ^{\circ}\text{C}$ , capacitors shall meet the limits specified in endurance. | | | | | | | | Shell life | (With voltage treatment) | ors snan meet the innits | specified in endurance. | | | | | | | +85 °C ± 2 °C, 85 % to 90 | %PH 2000 b rated volt | rago applied | | | | | | | Capacitance change | Within ±30% of the in | | | | | | | Damp heat | Dissipation factor (tan δ) | ≤ 200 % of the initial I | | | | | | | (Load) | E.S.R. | $\leq$ 200 % of the initial I | | | | | | | | DC leakage current | Within the initial limit | mine. | | | | | | | | | -20℃, capacitors shall meet the | | | | | | D. C. L. C. C. L. | following limits. | Sanig Stabilized at 1 | To of supersions shall mode the | | | | | | Resistance to | Capacitance change | Within ±10% of the in | itial value | | | | | | soldering heat | Dissipation factor (tan $\delta$ ) | Within the initial limit | | | | | | | | DC leakage current | Within the initial limit | | | | | | #### **Marking** #### Dimensions (not to scale) **ZS** series #### **Characteristics list** Endurance 1 : 125 $^{\circ}$ C 4000 h Endurance 2 : 135 $^{\circ}$ C 4000 h | | | ( | Case size | е | | | Specif | ication | | Part n | umber | Min. packaging | |--------------------------------|------|------|-----------|------------------|--------------|-----------------|-------------------|---------|-------------------|-------------|-----------------|----------------| | Rated voltage (±20 %) (V) (µF) | | øD | ı | L | Size<br>code | | urrent *1<br>rms) | ESR*2 | tan $\delta^{*3}$ | Standard | Vibration-proof | q'ty<br>(pcs) | | (*) | (µF) | طو | Standard | Vibration -proof | | Endurance 1 | Endurance 2 | (mΩ) | tan o | product | product | Taping | | | 470 | 10.0 | 12.5 | 12.8 | G12 | (+125℃)<br>3500 | (+135°C)<br>2500 | 14 | 0.14 | EEHZS1E471P | EEHZS1E471V | 400 | | 25 | _ | | | _ | | | | | - | | _ | | | | 560 | 10.0 | 16.5 | 16.8 | G16 | 4000 | 2900 | 11 | 0.14 | EEHZS1E561P | EEHZS1E561V | 250 | | 35 | 330 | 10.0 | 12.5 | 12.8 | G12 | 3500 | 2500 | 14 | 0.12 | EEHZS1V331P | EEHZS1V331V | 400 | | 33 | 470 | 10.0 | 16.5 | 16.8 | G16 | 4000 | 2900 | 11 | 0.12 | EEHZS1V471P | EEHZS1V471V | 250 | | 50 | 150 | 10.0 | 12.5 | 12.8 | G12 | 3200 | 2250 | 17 | 0.10 | EEHZS1H151P | EEHZS1H151V | 400 | | | 220 | 10.0 | 16.5 | 16.8 | G16 | 3700 | 2600 | 13 | 0.10 | EEHZS1H221P | EEHZS1H221V | 250 | | 63 | 100 | 10.0 | 12.5 | 12.8 | G12 | 3000 | 2100 | 19 | 0.08 | EEHZS1J101P | EEHZS1J101V | 400 | | | 150 | 10.0 | 16.5 | 16.8 | G16 | 3500 | 2400 | 15 | 0.08 | EEHZS1J151P | EEHZS1J151V | 250 | <sup>\*1:</sup> Ripple current (100 kHz $/ +125 \degree \text{C}$ or $+135 \degree \text{C}$ ) <sup>◆</sup> Please refer to the page of "Reflow profile" and "The taping dimensions". | Frequency of | correction | n factor for ripp | ole current | | | |-----------------------|---------------|---------------------|----------------------|-----------------------|---------------------| | Rated capacitance (C) | Frequency (f) | 100 Hz ≤ f < 200 Hz | 200 Hz ≦ f < 300 Hz | 300 Hz ≤ f < 500 Hz | 500 Hz ≦ f < 1 kHz | | 100 μF ≦ C < 150 μF | Correction | 0.15 | 0.20 | 0.25 | 0.30 | | 150 µF ≦ C | factor | 0.15 | 0.25 | 0.25 | 0.30 | | | | | | | | | Rated capacitance (C) | Frequency (f) | 1 kHz ≦ f < 2 kHz | 2 kHz ≦ f < 3 kHz | 3 kHz ≦ f < 5 kHz | 5 kHz ≦ f < 10 kHz | | 100 μF ≦ C < 150 μF | Correction | 0.40 | 0.45 | 0.55 | 0.60 | | 150 µF ≦ C | factor | 0.45 | 0.50 | 0.60 | 0.65 | | | | | | | | | Rated capacitance (C) | Frequency (f) | 10 kHz ≦ f < 15 kHz | 15 kHz ≦ f < 20 kHz | 20 kHz ≦ f < 30 kHz | 30 kHz ≦ f < 40 kHz | | 100 μF ≦ C < 150 μF | Correction | 0.70 | 0.75 | 0.80 | 0.80 | | 150 μF ≦ C | factor | 0.75 | 0.80 | 0.85 | 0.85 | | | | | | | | | Rated capacitance (C) | Frequency (f) | 40 kHz ≦ f < 50 kHz | 50 kHz ≦ f < 100 kHz | 100 kHz ≦ f < 500 kHz | 500 kHz ≦ f | | 100 μF ≦ C < 150 μF | Correction | 0.85 | 0.90 | 1.00 | 1.00 | | 150 μF ≦ C | factor | 0.85 | 0.90 | 1.00 | 1.00 | <sup>\*2:</sup> ESR (100 kHz / +20 ℃) <sup>\*3:</sup> tan δ (120 Hz / +20 °C) ## **Surface Mount Type** **ZSU** series High temperature lead-free reflow #### **Features** - Endurance: 4000 h at 125 ℃ - Large capacitance compared with ZS series - Vibration-proof product is available upon request. - AEC-Q200 compliant - RoHS compliant | Specifications | | | | | | | | | |------------------------------------|-------------------------------------------------------------------------------------------|----------------------------|--------------|----------------------------|--|--|--|--| | Size code | G12 | | | G16 | | | | | | Category temp. range | | -55 ℃ to | +125 ℃ | | | | | | | Rated voltage range | | 25 V to | 63 V | | | | | | | Nominal cap.range | 120 μF to 6 | | | 180 μF to 1000 μF | | | | | | Capacitance tolerance | | ±20 % (120 F | lz / +20 ℃) | | | | | | | DC leakage current | | I ≤ 0.01 CV (μA) | After 2 minu | ıtes | | | | | | Dissipation factor (tan $\delta$ ) | | Please see the attache | | | | | | | | Surge voltage (V) | | Rated voltage × 1.2 | | | | | | | | | +125 | | | ceeding the rated voltage. | | | | | | | Capacitance change | Within ±30% of the initi | | | | | | | | | Dissipation factor (tan $\delta$ ) | ≤ 200 % of the initial lin | nit | | | | | | | Endurance | E.S.R. | ≤ 200 % of the initial lin | nit | | | | | | | Lituarance | DC leakage current | Within the initial limit | | | | | | | | | ESR after endurance | Size code | | | | | | | | | (Ω / 100 kHz)(-40 °C) | G12 | G16 | | | | | | | | , , | 0.3 | 0.3 | | | | | | | | After storage for 1000 hours at $+125~\%$ ± 2 $\%$ with no voltage applied and then being | | | | | | | | | Shelf life | stabilized at +20℃, capacitors shall meet the limits specified in endurance. | | | | | | | | | | (With voltage treatment) | | | | | | | | | | $+85 \% \pm 2 \%$ , 85 % to 90 | | | | | | | | | Damp heat | Capacitance change | Within ±30% of the initi | | | | | | | | (Load) | Dissipation factor (tan $\delta$ ) | ≤ 200 % of the initial lin | | | | | | | | (Load) | E.S.R. | ≤ 200 % of the initial lin | nit | | | | | | | | DC leakage current | Within the initial limit | | | | | | | | | After reflow soldering and the | nen being stabilized at +2 | .0℃, capacit | ors shall meet the | | | | | | Resistance to | following limits. | | | | | | | | | soldering heat | Capacitance change | Within ±10% of the initi | al value | | | | | | | Soldering neat | Dissipation factor (tan $\delta$ ) | Within the initial limit | | | | | | | | | DC leakage current | Within the initial limit | | | | | | | #### **Marking** 50 63 Н #### **Dimensions (not to scale)** #### [Standard] $\ominus$ Р Size code øD A, B Н G12 11.0±0.2 10.0 12.5 $1.2 \pm 0.2$ 4.6 10.0 10.3 11.0±0.2 L±0.3 Pressure relief ( ) Reference size [Vibration-proof product] L±0.3 Pressure relief Unit: mm Size code R т øD A, B 12.8 10.3 11.0±0.2 0 to +0.15 0.70±0.2 6.9 1.3±0.2 G12 1.2±0.2 4.6 10.0 G16 10.0 16.8 10.3 11.0±0.2 0 to +0.15 1.2±0.2 4.6 0.70±0.2 6.9 1.3±0.2 **ZSU** series #### **Characteristics list** Endurance : 125 ℃ 4000 h | | | | Case size | 9 | | Spe | ecificatio | n | Part n | umber | Min.packaging<br>q'ty (pcs) | |-------------------------|--------------------------------|------|-----------|---------------------|--------------|---------------------------------------------|---------------------------|---------------------|---------------------|----------------------------|-----------------------------| | Rated<br>voltage<br>(V) | Capacitance<br>(±20 %)<br>(µF) | øD | Standard | Vibration<br>-proof | Size<br>code | Ripple<br>current <sup>*1</sup><br>(mA rms) | ESR <sup>*2</sup><br>(mΩ) | tan δ <sup>*3</sup> | Standard<br>product | Vibration-proof<br>product | Taping | | 25 | 680 | 10.0 | 12.5 | 12.8 | G12 | 3500 | 14 | 0.14 | EEHZS1E681UP | EEHZS1E681UV | 400 | | 25 | 1000 | 10.0 | 16.5 | 16.8 | G16 | 4000 | 11 | 0.14 | EEHZS1E102UP | EEHZS1E102UV | 250 | | 35 | 470 | 10.0 | 12.5 | 12.8 | G12 | 3500 | 14 | 0.12 | EEHZS1V471UP | EEHZS1V471UV | 400 | | 33 | 680 | 10.0 | 16.5 | 16.8 | G16 | 4000 | 11 | 0.12 | EEHZS1V681UP | EEHZS1V681UV | 250 | | 50 | 180 | 10.0 | 12.5 | 12.8 | G12 | 3200 | 17 | 0.10 | EEHZS1H181UP | EEHZS1H181UV | 400 | | 30 | 270 | 10.0 | 16.5 | 16.8 | G16 | 3700 | 13 | 0.10 | EEHZS1H271UP | EEHZS1H271UV | 250 | | 63 | 120 | 10.0 | 12.5 | 12.8 | G12 | 3000 | 19 | 0.08 | EEHZS1J121UP | EEHZS1J121UV | 400 | | | 180 | 10.0 | 16.5 | 16.8 | G16 | 3500 | 15 | 0.08 | EEHZS1J181UP | EEHZS1J181UV | 250 | <sup>\*1:</sup> Ripple current (100 kHz / +125 ℃) <sup>◆</sup> Please refer to the page of "Reflow profile" and "The taping dimensions". | Frequency correction factor for ripple current | | | | | | | | | | | | |------------------------------------------------|-------------------|---------------------|----------------------|-----------------------|------------------------|--|--|--|--|--|--| | Rated capacitance (C) | Frequency (f) | 100 Hz ≦ f < 120 Hz | 120 Hz ≦ f < 200 Hz | 200 Hz ≦ f < 300 Hz | 300 Hz ≦ f < 500 Hz | | | | | | | | 120 µF ≦ C | Correction factor | 0.15 | 0.20 | 0.25 | 0.30 | | | | | | | | | | | T | | | | | | | | | | Rated capacitance (C) | Frequency (f) | 500 Hz ≦ f < 1 kHz | 1 kHz ≦ f < 2 kHz | 2 kHz ≦ f < 3 kHz | 3 kHz ≦ f < 5 kHz | | | | | | | | 120 µF ≦ C | Correction factor | 0.40 | 0.50 | 0.60 | 0.65 | | | | | | | | | | | | | | | | | | | | | Rated capacitance (C) | Frequency (f) | 5 kHz ≦ f < 10 kHz | 10 kHz ≦ f < 15 kHz | 15 kHz ≦ f < 20 kHz | 20 kHz ≦ f < 30 kHz | | | | | | | | 120 µF ≦ C | Correction factor | 0.70 | 0.75 | 0.80 | 0.85 | | | | | | | | | | | | | | | | | | | | | Rated capacitance (C) | Frequency (f) | 30 kHz ≦ f < 50 kHz | 50 kHz ≦ f < 100 kHz | 100 kHz ≦ f < 500 kHz | 500 kHz ≦ f < 1000 kHz | | | | | | | | 120 μF ≦ C | Correction factor | 0.85 | 0.90 | 1.00 | 1.00 | | | | | | | <sup>\*2:</sup> ESR (100 kHz / +20 ℃) <sup>\*3:</sup> tan δ (120 Hz / +20 °C) ## **Surface Mount Type** **ZU** series #### High temperature lead-free reflow #### **Features** - Endurance: 4000 h at 135 ℃ - High ripple current compared with ZS series - Vibration-proof product is available upon request. - AEC-Q200 compliant - RoHS compliant | Specifications | | | | | | | | |------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--|--|--|--|--| | Size code | G12 | G16 | | | | | | | Category temp. range | | -55 ℃ to +135 ℃ | | | | | | | Rated voltage range | | 25 V to 63 V | | | | | | | Nominal cap.range | 100 μF to 4 | | | | | | | | Capacitance tolerance | | ±20 % (120 Hz / +20 ℃) | | | | | | | DC leakage current | | I ≤ 0.01 CV (μA) After 2 minutes | | | | | | | Dissipation factor (tan $\delta$ ) | | Please see the attached characteristics list | | | | | | | Surge voltage (V) | | Rated voltage $\times$ 1.25 (15 $^{\circ}$ C to 35 $^{\circ}$ C) | | | | | | | | | ply the rated ripple current without exceeding the rated voltage | | | | | | | | Capacitance change | Within ±30% of the initial value | | | | | | | Endurance 1 | Dissipation factor (tan $\delta$ ) | ≤ 200 % of the initial limit | | | | | | | | E.S.R. | ≤ 200 % of the initial limit | | | | | | | | DC leakage current | Within the initial limit | | | | | | | | $+135$ °C $\pm$ 2 °C, 4000 h, apply the rated ripple current without exceeding the rated voltage | | | | | | | | | Capacitance change Within ±30% of the initial value | | | | | | | | Endurance 2 | Dissipation factor (tan $\delta$ ) | ≤ 200 % of the initial limit | | | | | | | | E.S.R. | ≤ 200 % of the initial limit | | | | | | | | DC leakage current | | | | | | | | el 16116 | After storage for 1000 hours at +135 $^{\circ}$ C ± 2 $^{\circ}$ C with no voltage applied and then being | | | | | | | | Shelf life | stabilized at $+20$ °C, capacitors shall meet the limits specified in endurance 2. | | | | | | | | | (With voltage treatment) | | | | | | | | | $85.0 \pm 2.0, 85\%$ to 90 % | hRH, 2000 h, rated voltage applied | | | | | | | Damp heat | Capacitance change | Within ±30% of the initial value | | | | | | | (Load) | Dissipation factor (tan $\delta$ ) | | | | | | | | (2000) | E.S.R. | ≤ 200 % of the initial limit | | | | | | | | DC leakage current | Within the initial limit | | | | | | | | following limits. | hen being stabilized at +20 ℃, capacitors shall meet the | | | | | | | Resistance to | | Within ±10% of the initial value | | | | | | | soldering heat | Capacitance change | Within the initial limit | | | | | | | | Dissipation factor (tan δ) | | | | | | | | | DC leakage current | Within the initial limit | | | | | | #### **Marking** #### Dimensions (not to scale) **ZU** series #### **Characteristics list** Endurance 1 : 125 $^{\circ}$ C 4000 h Endurance 2 : 135 $^{\circ}$ C 4000 h | | Rated voltage (V) ( $\mu F$ ) $\mu F$ (V) ( $\mu F$ ) $\mu F$ (Case size (mm) $\mu F$ (mm) $\mu F$ | | | Specification | | | | Part n | Min. packaging | | | | |----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|---------------------|--------------|------------------------|------------------------|--------|-------------------|-------------|-----------------|---------------| | | | | ı | L | Size<br>code | | urrent *1<br>rms) | ESR*2 | tan $\delta^{*3}$ | Standard | Vibration-proof | q'ty<br>(pcs) | | | α , | | Standard | Vibration<br>-proof | | Endurance 1<br>(+125℃) | Endurance 2<br>(+135℃) | (mΩ) | | product | product | Taping | | 25 | 470 | 10.0 | 12.5 | 12.8 | G12 | 5000 | 3500 | 10 | 0.14 | EEHZU1E471P | EEHZU1E471V | 400 | | 25 | 560 | 10.0 | 16.5 | 16.8 | G16 | 5800 | 4000 | 8 | 0.14 | EEHZU1E561P | EEHZU1E561V | 250 | | 35 | 330 | 10.0 | 12.5 | 12.8 | G12 | 4800 | 3300 | 11 | 0.12 | EEHZU1V331P | EEHZU1V331V | 400 | | 35 | 470 | 10.0 | 16.5 | 16.8 | G16 | 5500 | 3800 | 9 | 0.12 | EEHZU1V471P | EEHZU1V471V | 250 | | 50 | 150 | 10.0 | 12.5 | 12.8 | G12 | 4600 | 3200 | 12 | 0.10 | EEHZU1H151P | EEHZU1H151V | 400 | | 50 | 220 | 10.0 | 16.5 | 16.8 | G16 | 5200 | 3600 | 10 | 0.10 | EEHZU1H221P | EEHZU1H221V | 250 | | 63 | 100 | 10.0 | 12.5 | 12.8 | G12 | 4600 | 3200 | 12 | 0.08 | EEHZU1J101P | EEHZU1J101V | 400 | | | 150 | 10.0 | 16.5 | 16.8 | G16 | 5200 | 3600 | 10 | 0.08 | EEHZU1J151P | EEHZU1J151V | 250 | <sup>\*1:</sup> Ripple current (100 kHz $/ +125 \degree \text{C} \text{ or} +135 \degree \text{C}$ ) <sup>◆</sup> Please refer to the page of "Reflow profile" and "The taping dimensions". | Frequency c | correction | n factor for ripp | ole current | | | |-----------------------|---------------|---------------------|----------------------|-----------------------|---------------------| | Rated capacitance (C) | Frequency (f) | 100 Hz ≤ f < 200 Hz | 200 Hz ≦ f < 300 Hz | 300 Hz ≦ f < 500 Hz | 500 Hz ≦ f < 1 kHz | | 100 μF ≦ C < 150 μF | Correction | 0.15 | 0.20 | 0.25 | 0.30 | | 150 μF ≦ C | factor | 0.15 | 0.25 | 0.25 | 0.30 | | | | | | | | | Rated capacitance (C) | Frequency (f) | 1 kHz ≦ f < 2 kHz | 2 kHz ≦ f < 3 kHz | 3 kHz ≦ f < 5 kHz | 5 kHz ≦ f < 10 kHz | | 100 μF ≤ C < 150 μF | Correction | 0.40 | 0.45 | 0.55 | 0.60 | | 150 μF ≦ C | factor | 0.45 | 0.50 | 0.60 | 0.65 | | | | | | | | | Rated capacitance (C) | Frequency (f) | 10 kHz ≦ f < 15 kHz | 15 kHz ≦ f < 20 kHz | 20 kHz ≤ f < 30 kHz | 30 kHz ≦ f < 40 kHz | | 100 μF ≦ C < 150 μF | Correction | 0.70 | 0.75 | 0.80 | 0.80 | | 150 μF ≦ C | factor | 0.75 | 0.80 | 0.85 | 0.85 | | | | | | | | | Rated capacitance (C) | Frequency (f) | 40 kHz ≦ f < 50 kHz | 50 kHz ≦ f < 100 kHz | 100 kHz ≤ f < 500 kHz | 500 kHz ≦ f | | 100 μF ≦ C < 150 μF | Correction | 0.85 | 0.90 | 1.00 | 1.00 | | 150 μF ≦ C | factor | 0.85 | 0.90 | 1.00 | 1.00 | | | | - | | | | #### After endurance ESR (100 kHz、-40℃) | Size code | G12 | G16 | |-----------|-----|-----| | ESR (Ω) | 0.3 | 0.3 | <sup>\*2:</sup> ESR (100 kHz / +20 ℃) <sup>\*3:</sup> tan $\delta$ (120 Hz / +20 °C) ## **Surface Mount Type** **ZE** series #### High temperature lead-free reflow #### **Features** - Endurance: 2000 h at 145 ℃ (High temperature / Long life) - Low ESR and high ripple current (85 % over, Lower ESR than current V-TP) - High-withstand voltage ( to 63 V), Low LC (0.01 CV or 3 μA) - Equivalent to conductive polymer type aluminum electrolytic capacitor (There are little characteristics change by temperature and frequency) - Vibration-proof product is available upon request. (ø8 mm and larger) - AEC-Q200 compliant - RoHS compliant | Specifications | | | | | | | | | |------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--| | Size code | F | G | | | | | | | | Category temp. range | | -55 ℃ to +145 ℃ | | | | | | | | Rated voltage range | | 25 V to 63 V | | | | | | | | Nominal cap.range | 33 μF to 2 | 220 μF 56 μF to 330 μF | | | | | | | | Capacitance tolerance | | ±20 % (120 Hz / +20 ℃) | | | | | | | | DC leakage current | $I \leq 0$ . | .01 CV or 3 (μA) After 2 minutes (whichever is greater) | | | | | | | | Dissipation factor (tan $\delta$ ) | | Please see the attached characteristics list | | | | | | | | Surge voltage (V) | | Rated voltage $\times$ 1.25 (15 $^{\circ}$ C to 35 $^{\circ}$ C) | | | | | | | | | | pply the rated ripple current without exceeding the rated voltage | | | | | | | | | Capacitance change | Within ±30% of the initial value | | | | | | | | Endurance 1 | Dissipation factor (tan $\delta$ ) | | | | | | | | | | E.S.R. | ≤ 200 % of the initial limit | | | | | | | | | DC leakage current | Within the initial limit | | | | | | | | | | $+135$ °C $\pm$ 2 °C, 4000 h, apply the rated ripple current without exceeding the rated voltage | | | | | | | | | Capacitance change Within ±30% of the initial value | | | | | | | | | Endurance 2 | Dissipation factor (tan $\delta$ ) | | | | | | | | | | E.S.R. | ≤ 200 % of the initial limit | | | | | | | | | DC leakage current | Within the initial limit | | | | | | | | | | s at $+145 ^{\circ}\text{C} \pm 2 ^{\circ}\text{C}$ with no voltage applied and then being | | | | | | | | Shelf life | stabilized at +20 $^{\circ}$ C, capacitors shall meet the limits specified in endurance 1. | | | | | | | | | | (With voltage treatment) | | | | | | | | | | | 6RH, 2000 h, rated voltage applied | | | | | | | | Damp heat | Capacitance change | Within ±30% of the initial value | | | | | | | | (Load) | Dissipation factor (tan $\delta$ ) | | | | | | | | | (Lodd) | E.S.R. | ≤ 200 % of the initial limit | | | | | | | | | DC leakage current | Within the initial limit | | | | | | | | | | hen being stabilized at +20 $^{\circ}$ C, capacitors shall meet the | | | | | | | | Resistance to | following limits. | Turning a control of the | | | | | | | | soldering heat | Capacitance change | Within ±10% of the initial value | | | | | | | | Soldering fiedt | Dissipation factor (tan δ) | Within the initial limit | | | | | | | | | DC leakage current | Within the initial limit | | | | | | | #### **Marking** #### **Dimensions (not to scale)** **ZE** series #### **Characteristics list** Endurance 1 : 145 ℃ 2000 h Endurance 2 : 135 ℃ 4000 h | | | | Case size<br>(mm) | | | | Specif | ication | | Part n | Min. packaging | | |---------------|------|------|-------------------|---------------------|------|-------------|----------------------------|---------------------------|---------------------|-------------|-----------------|---------------| | Rated voltage | | | I | L | | | Ripple current *1 (mA rms) | | *2 | Standard | Vibration-proof | q'ty<br>(pcs) | | (V) | (µF) | øD | Standard | Vibration<br>-proof | code | Endurance 1 | Endurance 2 | ESR <sup>*2</sup><br>(mΩ) | tan δ <sup>*3</sup> | product | product | Taping | | | | | | | | (+145℃) | (+135℃) | | | | | | | 25 | 220 | 8.0 | 10.2 | 10.5 | F | 700 | 1600 | 27 | 0.14 | EEHZE1E221P | EEHZE1E221V | 500 | | 23 | 330 | 10.0 | 10.2 | 10.5 | G | 900 | 2000 | 20 | 0.14 | EEHZE1E331P | EEHZE1E331V | 500 | | 25 | 150 | 8.0 | 10.2 | 10.5 | F | 700 | 1600 | 27 | 0.12 | EEHZE1V151P | EEHZE1V151V | 500 | | 35 | 270 | 10.0 | 10.2 | 10.5 | G | 900 | 2000 | 20 | 0.12 | EEHZE1V271P | EEHZE1V271V | 500 | | 50 | 68 | 8.0 | 10.2 | 10.5 | F | 600 | 1250 | 30 | 0.10 | EEHZE1H680P | EEHZE1H680V | 500 | | 50 | 100 | 10.0 | 10.2 | 10.5 | G | 800 | 1600 | 28 | 0.10 | EEHZE1H101P | EEHZE1H101V | 500 | | | 33 | 8.0 | 10.2 | 10.5 | F | 600 | 1100 | 40 | 0.08 | EEHZE1J330P | EEHZE1J330V | 500 | | 63 | 56 | 10.0 | 10.2 | 10.5 | G | 800 | 1400 | 30 | 0.08 | EEHZE1J560P | EEHZE1J560V | 500 | | | 82 | 10.0 | 10.2 | 10.5 | G | 800 | 1400 | 30 | 0.08 | EEHZE1J820P | EEHZE1J820V | 500 | <sup>\*1:</sup> Ripple current (100 kHz $/ +145 \,^{\circ}$ or $+135 \,^{\circ}$ ) ◆ The dimensions of the vibration-proof products, please refer to the page of the mounting specification. | ◆ The dimensions of the vibration-proof products, please refer to the page of the mounting specification. | | | | | | | | | | | |-----------------------------------------------------------------------------------------------------------|---------------|---------------------|----------------------|-----------------------|---------------------|--|--|--|--|--| | Frequency correction factor for ripple current | | | | | | | | | | | | Rated capacitance (C) | Frequency (f) | 100 Hz ≤ f < 200 Hz | 200 Hz ≤ f < 300 Hz | 300 Hz ≤ f < 500 Hz | 500 Hz ≤ f < 1 kHz | | | | | | | C < 47 μF | Correction | 0.10 | 0.10 | 0.15 | 0.20 | | | | | | | 47 μF ≦ C < 150 μF | factor | 0.15 | 0.20 | 0.25 | 0.30 | | | | | | | 150 μF ≦ C | Tactor | 0.15 | 0.25 | 0.25 | 0.30 | | | | | | | | | | | | | | | | | | | Rated capacitance (C) | Frequency (f) | 1 kHz ≦ f < 2 kHz | 2 kHz ≦ f < 3 kHz | 3 kHz ≦ f < 5 kHz | 5 kHz ≦ f < 10 kHz | | | | | | | C < 47 µF | Correction | 0.30 | 0.40 | 0.45 | 0.50 | | | | | | | 47 μF ≦ C < 150 μF | factor | 0.40 | 0.45 | 0.55 | 0.60 | | | | | | | 150 μF ≦ C | Tactor | 0.45 0.50 0 | | 0.60 | 0.65 | | | | | | | | | | | | | | | | | | | Rated capacitance (C) | Frequency (f) | 10 kHz ≦ f < 15 kHz | 15 kHz ≦ f < 20 kHz | 20 kHz ≤ f < 30 kHz | 30 kHz ≦ f < 40 kHz | | | | | | | C < 47 µF | Correction | 0.60 | 0.65 | 0.70 | 0.75 | | | | | | | 47 μF ≦ C < 150 μF | factor | 0.70 | 0.75 | 0.80 | 0.80 | | | | | | | 150 μF ≦ C | Tactor | 0.75 | 0.80 | 0.85 | 0.85 | | | | | | | | | | | | | | | | | | | Rated capacitance (C) | Frequency (f) | 40 kHz ≦ f < 50 kHz | 50 kHz ≤ f < 100 kHz | 100 kHz ≤ f < 500 kHz | 500 kHz ≦ f | | | | | | | C < 47 μF | Correction | 0.80 | 0.85 | 1.00 | 1.05 | | | | | | | 47 μF ≦ C < 150 μF | factor | 0.85 | 0.90 | 1.00 | 1.00 | | | | | | | 150 μF ≦ C | ractor | 0.85 | 0.90 | 1.00 | 1.00 | | | | | | #### After endurance ESR (100 kHz, -40°C) | Size code | F | G | |----------------|-----|-----| | ESR $(\Omega)$ | 0.4 | 0.3 | <sup>\*2:</sup> ESR (100 kHz / +20 °C) <sup>\*3:</sup> tan δ (120 Hz / +20 ℃) <sup>◆</sup> Please refer to the page of "Reflow profile" and "The taping dimensions". ## **Surface Mount Type** **ZF** series #### High temperature lead-free reflow #### **Features** - Endurance : 1000 h at 150 ℃ (High temperature) - Low ESR and high ripple current - High-withstand voltage ( to 63 V), Low LC (0.01 CV or 3 μA) - Vibration-proof product is available upon request - AEC-Q200 compliant - RoHS compliant | Specifications | | | | | | | | |------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------|--------|--------------|----------------------------|--|--| | Size code | F | | | | G | | | | Category temp. range | -55 ℃ to +150 ℃ | | | | | | | | Rated voltage range | | 2 | 5 V t | o 63 V | | | | | Nominal cap.range | 33 μF to 1 | | | | 56 μF to 270 μF | | | | Capacitance tolerance | | | | Hz / +20℃) | | | | | DC leakage current | $I \leq 0.$ | 01 CV or 3 (μA) Aft | | | | | | | Dissipation factor (tan $\delta$ ) | | Please see the a | | | | | | | Surge voltage (V) | | Rated voltage | | | | | | | | +150 °C ± 2 °C, 1000 h, ap | | | | ceeding the rated voltage. | | | | | Capacitance change | Within ±30% of the | | | | | | | | Dissipation factor (tan $\delta$ ) | ≤ 200 % of the in | | | | | | | Endurance | ESR | ≤ 200 % of the initial limit | | | | | | | | DC leakage current | Within the initial li | | | | | | | | ESR after endurance | Size o | code | | | | | | | (Ω / 100 kHz)(-40 ℃) | F | | G<br>0.3 | | | | | | , , | *** | | | pplied and then being | | | | Shelf life | After storage for 1000 hours at +150 $^{\circ}$ C ± 2 $^{\circ}$ C with no voltage applied and then being | | | | | | | | Sileli ille | stabilized at $+20 ^{\circ}$ C, capacitors shall meet the limits specified in endurance. (With voltage treatment) | | | | | | | | | +85 °C ± 2 °C, 85 % to 90 °C | %PH 2000 h rated | l volt | age applied | · | | | | | Capacitance change | Within ±30% of the | | | | | | | Damp heat (Load) | Dissipation factor (tan δ) | ≤ 200 % of the in | | | | | | | Damp near (Load) | ESR | ≤ 200 % of the in | | | | | | | | DC leakage current | Within the initial li | | | _ | | | | | After reflow soldering and the | | | 20 ℃, capaci | tors shall meet the | | | | Resistance to | following limits. | 3 | | , , | | | | | | Capacitance change | Within ±10% of the | ne ini | tial value | | | | | soldering heat | Dissipation factor (tan δ) | Within the initial li | | | | | | | | DC leakage current | Within the initial li | mit | | | | | #### **Marking** ### Example: 25 V 150 µF Marking color: BLACK Negative polarity marking (-) Capacitance (µF) Series identification Rated voltage code Lot number R. voltage code Unit: V Ε 25 V Н 50 63 #### Dimensions (not to scale) **ZF** series #### **Characteristics list** Endurance : 150 ℃ 1000 h | | | Case size<br>(mm) | | | Spe | cificatio | n | Part n | Min.packaging<br>q'ty (pcs) | | | |-------------------------|--------------------------------|-------------------|----------|-----------|--------------|---------------------------------------------|---------------------------|-------------------|-----------------------------|----------------------------|--------| | Rated<br>voltage<br>(V) | Capacitance<br>(±20 %)<br>(µF) | øD | Standard | Vibration | Size<br>code | Ripple<br>current <sup>*1</sup><br>(mA rms) | ESR <sup>*2</sup><br>(mΩ) | tan $\delta^{*3}$ | Standard<br>product | Vibration-proof<br>product | Taping | | | 150 | 8.0 | 10.2 | 10.5 | F | 800 | 27 | 0.14 | EEHZF1E151P | EEHZF1E151V | 500 | | 25 | 270 | 10.0 | 10.2 | 10.5 | G | 1000 | 20 | 0.14 | EEHZF1E271P | EEHZF1E271V | 500 | | | 100 | 8.0 | 10.2 | 10.5 | F | 770 | 30 | 0.12 | EEHZF1V101P | EEHZF1V101V | 500 | | 35 | 150 | 10.0 | 10.2 | 10.5 | G | 950 | 23 | 0.12 | EEHZF1V151P | EEHZF1V151V | 500 | | 50 | 56 | 8.0 | 10.2 | 10.5 | F | 700 | 35 | 0.10 | EEHZF1H560P | EEHZF1H560V | 500 | | 50 | 100 | 10.0 | 10.2 | 10.5 | G | 900 | 28 | 0.10 | EEHZF1H101P | EEHZF1H101V | 500 | | 63 | 33 | 8.0 | 10.2 | 10.5 | F | 650 | 40 | 0.08 | EEHZF1J330P | EEHZF1J330V | 500 | | | 56 | 10.0 | 10.2 | 10.5 | G | 840 | 30 | 0.08 | EEHZF1J560P | EEHZF1J560V | 500 | <sup>\*1:</sup> Ripple current (100 kHz / +150 °C) <sup>◆</sup> Please refer to the page of "Reflow profile" and "The taping dimensions". | Frequency co | orrection | factor for ripp | le current | | | |-----------------------|-------------------|---------------------|----------------------|-------------------------------------------|---------------------| | Rated capacitance (C) | Frequency (f) | 100 Hz ≤ f < 200 Hz | 200 Hz ≤ f < 300 Hz | 300 Hz ≤ f < 500 Hz | 500 Hz ≤ f < 1 kHz | | C < 47 μF | 6 | 0.10 | 0.10 | 0.15 | 0.20 | | 47 μF ≦ C < 150 μF | Correction factor | 0.15 | 0.20 | 0.25 | 0.30 | | 150 µF ≦ C | lactor | 0.15 | 0.25 | 0.25 | 0.30 | | | | | | | | | Rated capacitance (C) | Frequency (f) | 1 kHz ≦ f < 2 kHz | 2 kHz ≦ f < 3 kHz | 3 kHz ≦ f < 5 kHz | 5 kHz ≦ f < 10 kHz | | C < 47 μF | | 0.30 | 0.40 | 0.45 | 0.50 | | 47 μF ≦ C < 150 μF | Correction factor | 0.40 | 0.45 | 0.55 | 0.60 | | 150 µF ≦ C | lactor | 0.45 | 0.50 | 0.60 | 0.65 | | | | | | | | | Rated capacitance (C) | Frequency (f) | 10 kHz ≦ f < 15 kHz | 15 kHz ≦ f < 20 kHz | 20 kHz ≤ f < 30 kHz | 30 kHz ≦ f < 40 kHz | | C < 47 µF | | 0.60 | 0.65 | 0.70 | 0.75 | | 47 μF ≦ C < 150 μF | Correction factor | 0.70 | 0.75 | 0.80 | 0.80 | | 150 µF ≦ C | lactor | 0.75 | 0.80 | 0.85 | 0.85 | | | | | | | | | Rated capacitance (C) | Frequency (f) | 40 kHz ≤ f < 50 kHz | 50 kHz ≦ f < 100 kHz | $100 \text{ kHz} \le f < 500 \text{ kHz}$ | 500 kHz ≦ f | | C < 47 µF | C | 0.80 | 0.85 | 1.00 | 1.05 | | 47 μF ≦ C < 150 μF | Correction factor | 0.85 | 0.90 | 1.00 | 1.00 | | 150 µF ≦ C | iactor | 0.85 | 0.90 | 1.00 | 1.00 | <sup>\*2:</sup> ESR (100 kHz / +20 ℃) <sup>\*3:</sup> tan δ (120 Hz / +20 °C) ## **Radial Lead Type** **ZA-A** series **Hybrid** #### **Features** - Endurance : 10000 h at 105 ℃ (105 ℃ standard product) - Taping products for automatic insertion - AEC-Q200 compliant - RoHS compliant | Specifications | | | | | | | | |------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------|-----------------|-----------------------------------------|--|--|--| | Size code | F | | | G | | | | | Category temp. range | | | -55 ℃ to + | 105 ℃ | | | | | Rated voltage range | | | 25 V to 8 | 80 V | | | | | Nominal cap.range | 22 µF to 2 | 20 μF | | 33 μF to 330 μF | | | | | Capacitance tolerance | | ± | 20 % (120 Hz | z / +20℃) | | | | | DC leakage current | | $I \leq 0$ . | 01 CV (μA) A | fter 2 minutes | | | | | Dissipation factor (tan $\delta$ ) | | | | characteristics list | | | | | Surge voltage (V) | Rated voltage $\times$ 1.25 (15 $^{\circ}$ C to 35 $^{\circ}$ C) | | | | | | | | | | | | nt without exceeding the rated voltage. | | | | | | Capacitance change | | % of the initia | | | | | | | Dissipation factor (tan $\delta$ ) | ≤ 200 % of the initial limit | | | | | | | Endurance | ESR | ≤ 200 % of the initial limit | | | | | | | | DC leakage current | | | | | | | | | ESR after endurance | | code | | | | | | | (Ω / 100 kHz)(-40 °C) | F | G | | | | | | | , , | 0.4 | 0.3 | | | | | | | After storage for 1000 hours at +105 $^{\circ}$ C ± 2 $^{\circ}$ C with no voltage applied and then being | | | | | | | | Shelf life | stabilized at $+20$ °C, capacitors shall meet the limits specified in endurance. | | | | | | | | | (With voltage treatment) | | | | | | | | | +85 | | | | | | | | | Capacitance change | | % of the initia | | | | | | Damp heat (Load) | Dissipation factor (tan $\delta$ ) | | the initial lim | | | | | | | ESR | | the initial lim | it | | | | | | DC leakage current | Within the ii | | | | | | | | After flow soldering and the | n being stabil | ized at +20 °C | C, capacitors shall meet the | | | | | Resistance to | following limits. | 1 | | | | | | | soldering heat | Capacitance change | | % of the initia | l value | | | | | Solder ing fiede | Dissipation factor (tan $\delta$ ) | Within the ii | | | | | | | | DC leakage current | Within the in | nitial limit | | | | | #### **Marking** Example: 25 V 150 µF Marking color: BLACK Negative polarity marking (-) Capacitance (µF) Series identification E ZA Rated voltage code Lot number R.voltage code Unit: V E 25 V 35 50 63 80 Н J Κ **ZA-A** series ## **Characteristics list** Endurance : 105 ℃ 10000 h | | | ( | Case size | е | | Sp | ecification | | | Min.packaging q'ty (pcs) | |-------------------------|--------------------------------|------|-----------|-----|--------------|----------------------------------|---------------------------|---------------------|--------------|--------------------------| | Rated<br>voltage<br>(V) | Capacitance<br>(±20 %)<br>(µF) | øD | L | ød | Size<br>code | Ripple<br>current *1<br>(mA rms) | ESR <sup>*2</sup><br>(mΩ) | tan δ <sup>*3</sup> | Part number | Taping | | | 150 | 8.0 | 9.5 | 0.6 | F | 2300 | 27 | 0.14 | EEHAZA1E151B | 1000 | | 25 | 220 | 8.0 | 9.5 | 0.6 | F | 2300 | 27 | 0.14 | EEHAZA1E221B | 1000 | | | 330 | 10.0 | 9.5 | 0.6 | G | 2500 | 20 | 0.14 | EEHAZA1E331B | 500 | | | 100 | 8.0 | 9.5 | 0.6 | F | 2300 | 27 | 0.12 | EEHAZA1V101B | 1000 | | 35 | 150 | 8.0 | 9.5 | 0.6 | F | 2300 | 27 | 0.12 | EEHAZA1V151B | 1000 | | 33 | 220 | 10.0 | 9.5 | 0.6 | G | 2500 | 20 | 0.12 | EEHAZA1V221B | 500 | | | 270 | 10.0 | 9.5 | 0.6 | G | 2500 | 20 | 0.12 | EEHAZA1V271B | 500 | | | 47 | 8.0 | 9.5 | 0.6 | F | 1800 | 30 | 0.10 | EEHAZA1H470B | 1000 | | 50 | 68 | 8.0 | 9.5 | 0.6 | F | 1800 | 30 | 0.10 | EEHAZA1H680B | 1000 | | | 100 | 10.0 | 9.5 | 0.6 | G | 2000 | 28 | 0.10 | EEHAZA1H101B | 500 | | | 33 | 8.0 | 9.5 | 0.6 | F | 1700 | 40 | 0.08 | EEHAZA1J330B | 1000 | | | 47 | 8.0 | 9.5 | 0.6 | F | 1700 | 40 | 0.08 | EEHAZA1J470B | 1000 | | 63 | 56 | 10.0 | 9.5 | 0.6 | G | 1800 | 30 | 0.08 | EEHAZA1J560B | 500 | | | 68 | 10.0 | 9.5 | 0.6 | G | 1800 | 30 | 0.08 | EEHAZA1J680B | 500 | | | 82 | 10.0 | 9.5 | 0.6 | G | 1800 | 30 | 0.08 | EEHAZA1J820B | 500 | | | 22 | 8.0 | 9.5 | 0.6 | F | 1550 | 45 | 0.08 | EEHAZA1K220B | 1000 | | 80 | 33 | 10.0 | 9.5 | 0.6 | G | 1700 | 36 | 0.08 | EEHAZA1K330B | 500 | | | 47 | 10.0 | 9.5 | 0.6 | G | 1700 | 36 | 0.08 | EEHAZA1K470B | 500 | <sup>\*1:</sup> Ripple current (100 kHz $/ +105 \, ^{\circ}$ C) <sup>♦</sup> Please refer to the page of "Flow soldering profile" and "The taping dimensions". | Frequency correction factor for ripple current | | | | | | | | | | |------------------------------------------------|---------------|---------------------|----------------------|-----------------------|------------------------|--|--|--|--| | Rated capacitance (C) | Frequency (f) | 100 Hz ≤ f < 200 Hz | 200 Hz ≤ f < 300 Hz | 300 Hz ≤ f < 500 Hz | 500 Hz ≦ f < 1 kHz | | | | | | C < 47 µF | Correction | 0.10 | 0.10 | 0.15 | 0.20 | | | | | | 47 μF ≦ C < 150 μF | | 0.15 | 0.20 | 0.25 | 0.30 | | | | | | 150 μF ≦ C | factor | 0.15 | 0.25 | 0.25 | 0.30 | | | | | | Rated capacitance (C) | Frequency (f) | 1 kHz ≦ f < 2 kHz | 2 kHz ≦ f < 3 kHz | 3 kHz ≦ f < 5 kHz | 5 kHz ≦ f < 10 kHz | | | | | | C < 47 µF | Correction | 0.30 | 0.40 | 0.45 | 0.50 | | | | | | 47 μF ≦ C < 150 μF | | 0.40 | 0.45 | 0.55 | 0.60 | | | | | | 150 μF ≦ C | factor | 0.45 | 0.50 | 0.60 | 0.65 | | | | | | Rated capacitance (C) | Frequency (f) | 10 kHz ≦ f < 15 kHz | 15 kHz ≦ f < 20 kHz | 20 kHz ≦ f < 30 kHz | 30 kHz ≤ f < 40 kHz | | | | | | C < 47 µF | Correction | 0.60 | 0.65 | 0.70 | 0.75 | | | | | | 47 μF ≦ C < 150 μF | | 0.70 | 0.75 | 0.80 | 0.80 | | | | | | 150 μF ≦ C | factor | 0.75 | 0.80 | 0.85 | 0.85 | | | | | | Rated capacitance (C) | Frequency (f) | 40 kHz ≦ f < 50 kHz | 50 kHz ≦ f < 100 kHz | 100 kHz ≦ f < 500 kHz | 500 kHz ≤ f < 1000 kHz | | | | | | $C < 47 \mu F$ | requeries (1) | 0.80 | 0.85 | 1.00 | 1.05 | | | | | | 47 μF ≤ C < 150 μF | Correction | 0.85 | 0.83 | 1.00 | 1.00 | | | | | | 150 μF ≤ C | factor | 0.85 | 0.90 | 1.00 | 1.00 | | | | | <sup>\*2:</sup> ESR (100 kHz / +20 ℃) <sup>\*3:</sup> $\tan \delta$ (120 Hz / +20 °C) ## **Radial Lead Type** **ZC-A** series **Hybrid** #### **Features** - Endurance: 4000 h at 125 ℃ (125 ℃ standard product) - Taping products for automatic insertion - AEC-Q200 compliant - RoHS compliant | Specifications | | | | | | | |------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--| | Size code | F | G | | | | | | Category temp. range | | -55 ℃ to +125 ℃ | | | | | | Rated voltage range | | 25 V to 80 V | | | | | | Nominal cap.range | 22 µF to 2 | 220 μF 33 μF to 330 μF | | | | | | Capacitance tolerance | | ±20 % (120 Hz / +20℃) | | | | | | DC leakage current | | I ≤ 0.01 CV (μA) After 2 minutes | | | | | | Dissipation factor (tan $\delta$ ) | | Please see the attached characteristics list | | | | | | Surge voltage (V) | | Rated voltage $\times$ 1.25 (15 $^{\circ}$ C to 35 $^{\circ}$ C) | | | | | | | | ply the rated ripple current without exceeding the rated voltage. | | | | | | | Capacitance change | Within ±30% of the initial value | | | | | | Endurance 1 | Dissipation factor (tan $\delta$ ) | ≤ 200 % of the initial limit | | | | | | | ESR | ≤ 200 % of the initial limit | | | | | | | DC leakage current | Within the initial limit | | | | | | | | ply the rated ripple current without exceeding the rated voltage. | | | | | | | Capacitance change Within ±30% of the initial value | | | | | | | Endurance 2 | Dissipation factor (tan $\delta$ ) | ≤ 200 % of the initial limit | | | | | | | ESR | ≤ 300 % of the initial limit | | | | | | | DC leakage current | Within the initial limit | | | | | | | After storage for 1000 hours at +125 $^{\circ}$ C ± 2 $^{\circ}$ C with no voltage applied and then being | | | | | | | Shelf life | stabilized at +20 $^{\circ}$ C, capacitors shall meet the limits specified in endurance 1. | | | | | | | | (With voltage treatment) | | | | | | | | | %RH, 2000 h, rated voltage applied | | | | | | | Capacitance change | Within ±30% of the initial value | | | | | | Damp heat (Load) | Dissipation factor (tan $\delta$ ) | | | | | | | | ESR | ≤ 200 % of the initial limit | | | | | | | DC leakage current | Within the initial limit | | | | | | | | n being stabilized at +20 ℃, capacitors shall meet the | | | | | | Resistance to | following limits. | 1 Maril 1 1 4 6 0 4 6 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | | soldering heat | Capacitance change | Within ±10% of the initial value | | | | | | soldering neat | Dissipation factor (tan $\delta$ ) | Within the initial limit | | | | | | | DC leakage current | Within the initial limit | | | | | #### **Marking** **ZC-A** series #### **Characteristics list** Endurance 1 : 125 $^{\circ}$ C 4000 h Endurance 2 : 125 $^{\circ}$ C 3000 h | | | ( | Case size (mm) | 9 | | | Specif | ication | | | Min.packaging q'ty (pcs) | |-------------------------|--------------------------------|------|----------------|-----|--------------|-------------|-------------------------------|---------|---------------------|--------------|--------------------------| | Rated<br>voltage<br>(V) | Capacitance<br>(±20 %)<br>(µF) | øD | L | ød | Size<br>code | (mA | Ripple current *1<br>(mA rms) | | tan δ <sup>*3</sup> | Part number | Taping | | | | | | | | Endurance 1 | Endurance 2 | | | | | | | 150 | 8.0 | 9.5 | 0.6 | F | 1600 | 1900 | 27 | 0.14 | EEHAZC1E151B | 1000 | | 25 | 220 | 8.0 | 9.5 | 0.6 | F | 1600 | 1900 | 27 | 0.14 | EEHAZC1E221B | 1000 | | | 330 | 10.0 | 9.5 | 0.6 | G | 2000 | 2900 | 20 | 0.14 | EEHAZC1E331B | 500 | | | 100 | 8.0 | 9.5 | 0.6 | F | 1600 | 1900 | 27 | 0.12 | EEHAZC1V101B | 1000 | | 35 | 150 | 8.0 | 9.5 | 0.6 | F | 1600 | 1900 | 27 | 0.12 | EEHAZC1V151B | 1000 | | 33 | 220 | 10.0 | 9.5 | 0.6 | G | 2000 | 2800 | 20 | 0.12 | EEHAZC1V221B | 500 | | | 270 | 10.0 | 9.5 | 0.6 | G | 2000 | 2800 | 20 | 0.12 | EEHAZC1V271B | 500 | | | 47 | 8.0 | 9.5 | 0.6 | F | 1250 | - | 30 | 0.10 | EEHAZC1H470B | 1000 | | 50 | 68 | 8.0 | 9.5 | 0.6 | F | 1250 | - | 30 | 0.10 | EEHAZC1H680B | 1000 | | 30 | 100 | 10.0 | 9.5 | 0.6 | G | 1600 | - | 28 | 0.10 | EEHAZC1H101B | 500 | | | 120 | 10.0 | 9.5 | 0.6 | G | 1600 | - | 28 | 0.10 | EEHAZC1H121B | 500 | | | 33 | 8.0 | 9.5 | 0.6 | F | 1100 | - | 40 | 0.08 | EEHAZC1J330B | 1000 | | | 47 | 8.0 | 9.5 | 0.6 | F | 1100 | - | 40 | 0.08 | EEHAZC1J470B | 1000 | | 63 | 56 | 10.0 | 9.5 | 0.6 | G | 1400 | - | 30 | 0.08 | EEHAZC1J560B | 500 | | | 68 | 10.0 | 9.5 | 0.6 | G | 1400 | - | 30 | 0.08 | EEHAZC1J680B | 500 | | | 82 | 10.0 | 9.5 | 0.6 | G | 1400 | - | 30 | 0.08 | EEHAZC1J820B | 500 | | | 22 | 8.0 | 9.5 | 0.6 | F | 1050 | - | 45 | 0.08 | EEHAZC1K220B | 1000 | | 80 | 33 | 10.0 | 9.5 | 0.6 | G | 1360 | - | 36 | 0.08 | EEHAZC1K330B | 500 | | | 47 | 10.0 | 9.5 | 0.6 | G | 1360 | - | 36 | 0.08 | EEHAZC1K470B | 500 | <sup>\*1:</sup> Ripple current (100 kHz / +125 ℃) <sup>◆</sup> Please refer to the page of "Flow soldering profile" and "The taping dimensions". | Frequency correction factor for ripple current | | | | | | | | | |------------------------------------------------|-------------------|---------------------|----------------------|-----------------------|------------------------|--|--|--| | Rated capacitance (C) | Frequency (f) | 100 Hz ≦ f < 200 Hz | 200 Hz ≦ f < 300 Hz | 300 Hz ≦ f < 500 Hz | 500 Hz ≦ f < 1 kHz | | | | | C < 47 µF | C | 0.10 | 0.10 | 0.15 | 0.20 | | | | | 47 μF ≦ C < 150 μF | Correction factor | 0.15 | 0.20 | 0.25 | 0.30 | | | | | 150 µF ≦ C | Tactor | 0.15 | 0.25 | 0.25 | 0.30 | | | | | 5 | - (0) | | | | | | | | | Rated capacitance (C) | Frequency (f) | 1 kHz ≦ f < 2 kHz | 2 kHz ≤ f < 3 kHz | 3 kHz ≦ f < 5 kHz | 5 kHz ≤ f < 10 kHz | | | | | C < 47 µF | C | 0.30 | 0.40 | 0.45 | 0.50 | | | | | 47 μF ≦ C < 150 μF | Correction factor | 0.40 | 0.45 | 0.55 | 0.60 | | | | | 150 μF ≦ C | Tactor | 0.45 | 0.50 | 0.60 | 0.65 | | | | | | 1 | | | | | | | | | Rated capacitance (C) | Frequency (f) | 10 kHz ≤ f < 15 kHz | 15 kHz ≤ f < 20 kHz | 20 kHz ≤ f < 30 kHz | 30 kHz ≤ f < 40 kHz | | | | | C < 47 µF | Correction | 0.60 | 0.65 | 0.70 | 0.75 | | | | | 47 μF ≦ C < 150 μF | factor | 0.70 | 0.75 | 0.80 | 0.80 | | | | | 150 μF ≦ C | Tactor | 0.75 | 0.80 | 0.85 | 0.85 | | | | | | | | | | | | | | | Rated capacitance (C) | Frequency (f) | 40 kHz ≤ f < 50 kHz | 50 kHz ≤ f < 100 kHz | 100 kHz ≤ f < 500 kHz | 500 kHz ≤ f < 1000 kHz | | | | | C < 47 µF | C | 0.80 | 0.85 | 1.00 | 1.05 | | | | | 47 μF ≦ C < 150 μF | Correction factor | 0.85 | 0.90 | 1.00 | 1.00 | | | | | 150 μF ≦ C | Tactor | 0.85 | 0.90 | 1.00 | 1.00 | | | | ## After endurance ESR (100 kHz, -40 ℃) | Size code | F (ø8 x L9.5) | G (ø10 x L9.5) | |----------------|---------------|----------------| | ESR $(\Omega)$ | 0.4 | 0.3 | <sup>\*2:</sup> ESR (100 kHz / +20 °C) <sup>\*3:</sup> tan δ (120 Hz / +20 °C) ## **Radial Lead Type** **ZK-A** series **Hybrid** #### **Features** - Endurance : 4000 h at 125 ℃ (Large capacitance / High ripple current) - Taping products for automatic insertion - AEC-Q200 compliant - RoHS compliant | Specifications | | | | | | | | |------------------------------------|---------------------------------------------------------------------------------------------|------------------------------|--------------|--------------------------------------|--|--|--| | Size code | F | | | G | | | | | Category temp. range | | | -55 ℃ to + | 125 ℃ | | | | | Rated voltage range | | | 25 V to 3 | 85 V | | | | | Nominal cap.range | 180 µF to 2 | 270 μF | | 330 μF to 470 μF | | | | | Capacitance tolerance | | ±2 | 20 % (120 Hz | z / +20℃) | | | | | DC leakage current | | $I \leq 0.0$ | 01 CV (μA) A | fter 2 minutes | | | | | Dissipation factor (tan $\delta$ ) | | | | characteristics list | | | | | Surge voltage (V) | Rated voltage $\times$ 1.25 (15 $^{\circ}$ C to 35 $^{\circ}$ C) | | | | | | | | Endurance | | | | without exceeding the rated voltage. | | | | | | Capacitance change | Within ±30% | | | | | | | | Dissipation factor (tan $\delta$ ) | ≤ 200 % of the initial limit | | | | | | | | ESR ≤ 200 % of the initial limit | | | | | | | | | DC leakage current | | | | | | | | | ESR after endurance | Size o | | | | | | | | (Ω / 100 kHz)(-40 °C) | F | G | | | | | | | , , | 0.4 | 0.3 | | | | | | | After storage for 1000 hours at $+125$ °C $\pm$ 2 °C with no voltage applied and then being | | | | | | | | Shelf life | stabilized at $+20$ °C, capacitors shall meet the limits specified in endurance. | | | | | | | | | (With voltage treatment) | | | | | | | | | $+85 \% \pm 2 \%$ , 85 % to 90 | | | | | | | | | Capacitance change | Within ±30% | | | | | | | Damp heat (Load) | Dissipation factor (tan $\delta$ ) | ≤ 200 % of t | | | | | | | | ESR | ≤ 200 % of t | | it | | | | | | DC leakage current | Within the in | | | | | | | | After flow soldering and the | n being stabili | zed at +20 ℃ | C, capacitors shall meet the | | | | | Resistance to | following limits. | | | | | | | | soldering heat | Capacitance change | Within ±10% | | I value | | | | | Soldering fiedt | Dissipation factor (tan $\delta$ ) | Within the in | | | | | | | | DC leakage current | Within the in | itial limit | | | | | #### **Marking** | F 8.0 9.5 0.6 3.5±0.5 4.60± | L | |-----------------------------------------------|-------| | 1 0.0 3.5 0.0 3.5 0.5 | :0.50 | | G 10.0 9.5 0.6 5.0 <sup>+0.8</sup> -0.2 3.85± | 0.50 | **ZK-A** series ## **Characteristics list** | | | ( | Case size (mm) | 9 | | Specification | | | | Min.packaging q'ty (pcs) | |-------------------------|--------------------------------|------|----------------|-----|--------------|---------------------------------------------|---------------------------|---------------------|--------------|--------------------------| | Rated<br>voltage<br>(V) | Capacitance<br>(±20 %)<br>(µF) | øD | L | ød | Size<br>code | Ripple<br>current <sup>*1</sup><br>(mA rms) | ESR <sup>*2</sup><br>(mΩ) | tan δ <sup>*3</sup> | Part number | Taping | | 25 | 270 | 8.0 | 9.5 | 0.6 | F | 2000 | 27 | 0.14 | EEHAZK1E271B | 1000 | | 23 | 470 | 10.0 | 9.5 | 0.6 | G | 2800 | 20 | 0.14 | EEHAZK1E471B | 500 | | 35 | 180 | 8.0 | 9.5 | 0.6 | F | 2000 | 27 | 0.12 | EEHAZK1V181B | 1000 | | | 330 | 10.0 | 9.5 | 0.6 | G | 2800 | 20 | 0.12 | EEHAZK1V331B | 500 | <sup>\*1:</sup> Ripple current (100 kHz $/ +125 \degree$ C) <sup>♦</sup> Please refer to the page of "Flow soldering profile" and "The taping dimensions". | Frequen | Frequency correction factor for ripple current | | | | | | | | | |-------------------|------------------------------------------------|-----------------------|-----------------------|------------------------|--|--|--|--|--| | Frequency (f) | 100 Hz ≦ f < 120 Hz | 120 Hz ≦ f < 200 Hz | 200 Hz ≦ f < 300 Hz | 300 Hz ≦ f < 500 Hz | | | | | | | Correction factor | 0.15 | 0.20 | 0.25 | 0.30 | | | | | | | Frequency (f) | 500 Hz ≦ f < 1 kHz | 1 kHz ≦ f < 2 kHz | 2 kHz ≦ f < 3 kHz | 3 kHz ≦ f < 5 kHz | | | | | | | Correction factor | 0.40 | 0.50 | 0.60 | 0.65 | | | | | | | [manual au (f) | | 10 111- < 5 . 15 111- | 15 141- < 5 + 20 141- | 20 141- < 5 + 20 141- | | | | | | | Frequency (f) | 5 kHz ≦ f < 10 kHz | 10 kHz ≦ f < 15 kHz | 15 kHz ≦ f < 20 kHz | 20 kHz ≤ f < 30 kHz | | | | | | | Correction factor | 0.70 | 0.75 | 0.80 | 0.85 | | | | | | | - (0 | 20111 46 40111 | 10.111 7.6 50.111 | 50111 46 400111 | 100 111 16 1000 111 | | | | | | | Frequency (f) | 30 kHz ≤ f < 40 kHz | 40 kHz ≦ f < 50 kHz | 50 kHz ≦ f < 100 kHz | 100 kHz ≤ f < 1000 kHz | | | | | | | Correction factor | 0.85 | 0.85 | 0.90 | 1.00 | | | | | | <sup>\*2:</sup> ESR (100 kHz / +20 ℃) <sup>\*3:</sup> tan δ (120 Hz / +20 °C) ## **Radial Lead Type** **ZKU-A** series **Hybrid** #### **Features** - Endurance : 4000 h at 125 ℃ (Large capacitance / High ripple current) - Taping products for automatic insertion - AEC-Q200 compliant - RoHS compliant | Specifications | | | | | | | |------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|--| | Size code | F | G | | | | | | Category temp. range | | -55 ℃ to +125 ℃ | | | | | | Rated voltage range | | 25 V to 35 V | | | | | | Nominal cap.range | 220 µF to 3 | 330 μF 390 μF to 560 μF | | | | | | Capacitance tolerance | | ±20 % (120 Hz / +20℃) | | | | | | DC leakage current | | I ≤ 0.01 CV (μA) After 2 minutes | | | | | | Dissipation factor (tan $\delta$ ) | | Please see the attached characteristics list | | | | | | Surge voltage (V) | Rated voltage $\times$ 1.25 (15 $^{\circ}$ C to 35 $^{\circ}$ C) | | | | | | | | | oply the rated ripple current without exceeding the rated voltage. | | | | | | Endurance | Capacitance change | Within ±30% of the initial value | | | | | | | Dissipation factor (tan $\delta$ ) | ≤ 200 % of the initial limit | | | | | | | ESR | ≤ 200 % of the initial limit | | | | | | Endurance | DC leakage current | Within the initial limit | | | | | | | ESR after endurance | Size code | | | | | | | (Ω / 100 kHz)(-40 °C) | F G | | | | | | | , , , , , , , , , , , , , , , , , , , , | 0.4 0.3 | | | | | | | After storage for 1000 hours at +125 $^{\circ}$ C ± 2 $^{\circ}$ C with no voltage applied and then being | | | | | | | Shelf life | stabilized at +20 ℃, capacitors shall meet the limits specified in endurance. | | | | | | | | (With voltage treatment) | | | | | | | | | %RH, 2000 h, rated voltage applied | | | | | | | Capacitance change | Within ±30% of the initial value | | | | | | Damp heat (Load) | Dissipation factor (tan $\delta$ ) | ≤ 200 % of the initial limit | | | | | | | ESR | ≤ 200 % of the initial limit | | | | | | | DC leakage current | Within the initial limit | | | | | | | | en being stabilized at +20 ℃, capacitors shall meet the | | | | | | Resistance to | following limits. | | | | | | | | Capacitance change | Within ±10% of the initial value | | | | | | soldering heat | Dissipation factor (tan $\delta$ ) | Within the initial limit | | | | | | | DC leakage current | Within the initial limit | | | | | #### **Marking** | Size code | øD | L | ød | F | P1 | |-----------|------|-----|-----|-------------------------------------|-----------| | F | 8.0 | 9.5 | 0.6 | 3.5±0.5 | 4.60±0.50 | | G | 10.0 | 9.5 | 0.6 | 5.0 <sup>+0.8</sup> <sub>-0.2</sub> | 3.85±0.50 | **ZKU-A** series ## **Characteristics list** | | | Case size (mm) | | | | Sp | ecification | | | Min.packaging q'ty (pcs) | |-------------------------|--------------------------------|----------------|-----|-----|--------------|---------------------------------------------|---------------------------|---------------------|--------------|--------------------------| | Rated<br>voltage<br>(V) | Capacitance<br>(±20 %)<br>(µF) | øD | L | ød | Size<br>code | Ripple<br>current <sup>*1</sup><br>(mA rms) | ESR <sup>*2</sup><br>(mΩ) | tan δ <sup>*3</sup> | Part number | Taping | | 25 | 330 | 8.0 | 9.5 | 0.6 | F | 2000 | 27 | 0.14 | EEHAZKE331UB | 1000 | | 25 | 560 | 10.0 | 9.5 | 0.6 | G | 2800 | 20 | 0.14 | EEHAZKE561UB | 500 | | 35 | 220 | 8.0 | 9.5 | 0.6 | F | 2000 | 27 | 0.12 | EEHAZKV221UB | 1000 | | 33 | 390 | 10.0 | 9.5 | 0.6 | G | 2800 | 20 | 0.12 | EEHAZKV391UB | 500 | <sup>\*1:</sup> Ripple current (100 kHz / +125 ℃) <sup>♦</sup> Please refer to the page of "Flow soldering profile" and "The taping dimensions". | Frequen | Frequency correction factor for ripple current | | | | | | | | | | | | |-------------------|------------------------------------------------|---------------------|----------------------|------------------------|--|--|--|--|--|--|--|--| | Frequency (f) | 100 Hz ≦ f < 120 Hz | 120 Hz ≦ f < 200 Hz | 200 Hz ≦ f < 300 Hz | 300 Hz ≦ f < 500 Hz | | | | | | | | | | Correction factor | 0.15 | 0.20 | 0.25 | 0.30 | | | | | | | | | | Frequency (f) | 500 Hz ≦ f < 1 kHz | 1 kHz ≦ f < 2 kHz | 2 kHz ≦ f < 3 kHz | 3 kHz ≦ f < 5 kHz | | | | | | | | | | Correction factor | 0.40 | 0.50 | 0.60 | 0.65 | | | | | | | | | | - (0 | | | 1=111 | | | | | | | | | | | Frequency (f) | 5 kHz ≦ f < 10 kHz | 10 kHz ≦ f < 15 kHz | 15 kHz ≦ f < 20 kHz | 20 kHz ≤ f < 30 kHz | | | | | | | | | | Correction factor | 0.70 | 0.75 | 0.80 | 0.85 | | | | | | | | | | | | | | | | | | | | | | | | Frequency (f) | 30 kHz ≦ f < 40 kHz | 40 kHz ≦ f < 50 kHz | 50 kHz ≦ f < 100 kHz | 100 kHz ≤ f < 1000 kHz | | | | | | | | | | Correction factor | 0.85 | 0.85 | 0.90 | 1.00 | | | | | | | | | <sup>\*2:</sup> ESR (100 kHz / +20 ℃) <sup>\*3:</sup> tan δ (120 Hz / +20 °C) ## **Radial Lead Type** **ZT-A** series **Hybrid** #### **Features** - Endurance : 4000 h at 125 ℃ (High ripple current) - Taping products for automatic insertion - AEC-Q200 compliant - RoHS compliant | Specifications | | | | | | | | | |------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------|--------------------------------------|--|--|--|--| | Size code | F | | | G | | | | | | Category temp. range | | | -55 ℃ to + | 125 ℃ | | | | | | Rated voltage range | | | 25 V to 6 | 53 V | | | | | | Nominal cap.range | 33 µF to 2 | 20 μF | | 56 μF to 330 μF | | | | | | Capacitance tolerance | | ± | 20 % (120 Hz | z / +20℃) | | | | | | DC leakage current | | $I \leq 0$ . | 01 CV (μA) A | fter 2 minutes | | | | | | Dissipation factor (tan $\delta$ ) | | | | characteristics list | | | | | | Surge voltage (V) | | Rated voltage $\times$ 1.25 (15 $^{\circ}$ C to 35 $^{\circ}$ C) | | | | | | | | | | | | without exceeding the rated voltage. | | | | | | | Capacitance change | | % of the initia | | | | | | | | Dissipation factor (tan $\delta$ ) | ≤ 200 % of the initial limit | | | | | | | | Endurance | ESR | ≤ 200 % of the initial limit | | | | | | | | Litatiance | DC leakage current | | | | | | | | | | ESR after endurance | | code | | | | | | | | (Ω / 100 kHz)(-40 °C) | F | G | | | | | | | | , , | 0.4 | 0.3 | | | | | | | | After storage for 1000 hours at +125 $^{\circ}$ C ± 2 $^{\circ}$ C with no voltage applied and then being | | | | | | | | | Shelf life | stabilized at +20 ℃, capaci | tors shall me | et the limits s | pecified in endurance. | | | | | | | (With voltage treatment) | | | | | | | | | | +85 | | | | | | | | | | Capacitance change | | % of the initia | | | | | | | Damp heat (Load) | Dissipation factor (tan $\delta$ ) | | the initial lim | | | | | | | | ESR | | the initial lim | it | | | | | | | DC leakage current | Within the in | | | | | | | | | After flow soldering and the | n being stabil | ized at +20 °C | C, capacitors shall meet the | | | | | | Resistance to | following limits. | 1 | | | | | | | | soldering heat | Capacitance change | | % of the initia | l value | | | | | | Soluei IIIg Heat | Dissipation factor (tan $\delta$ ) | Within the in | | | | | | | | | DC leakage current | Within the in | nitial limit | | | | | | #### **Marking** **ZT-A** series ## **Characteristics list** | | | ( | Case size | 9 | | Sp | ecification | | | Min.packaging q'ty (pcs) | |-------------------------|--------------------------------|------|-----------|-----|--------------|---------------------------------------------|---------------------------|---------------------|--------------|--------------------------| | Rated<br>voltage<br>(V) | Capacitance<br>(±20 %)<br>(µF) | øD | L | ød | Size<br>code | Ripple<br>current <sup>*1</sup><br>(mA rms) | ESR <sup>*2</sup><br>(mΩ) | tan δ <sup>*3</sup> | Part number | Taping | | 25 | 220 | 8.0 | 9.5 | 0.6 | F | 2900 | 22 | 0.14 | EEHAZT1E221B | 1000 | | 25 | 330 | 10.0 | 9.5 | 0.6 | G | 3500 | 16 | 0.14 | EEHAZT1E331B | 500 | | 35 | 150 | 8.0 | 9.5 | 0.6 | F | 2900 | 22 | 0.12 | EEHAZT1V151B | 1000 | | | 270 | 10.0 | 9.5 | 0.6 | G | 3500 | 16 | 0.12 | EEHAZT1V271B | 500 | | | 68 | 8.0 | 9.5 | 0.6 | F | 2700 | 25 | 0.10 | EEHAZT1H680B | 1000 | | 50 | 100 | 10.0 | 9.5 | 0.6 | G | 2900 | 23 | 0.10 | EEHAZT1H101B | 500 | | | 120 | 10.0 | 9.5 | 0.6 | G | 2900 | 23 | 0.10 | EEHAZT1H121B | 500 | | | 33 | 8.0 | 9.5 | 0.6 | F | 2400 | 32 | 0.08 | EEHAZT1J330B | 1000 | | | 47 | 8.0 | 9.5 | 0.6 | F | 2400 | 32 | 0.08 | EEHAZT1J470B | 1000 | | 63 | 56 | 10.0 | 9.5 | 0.6 | G | 2800 | 25 | 0.08 | EEHAZT1J560B | 500 | | | 68 | 10.0 | 9.5 | 0.6 | G | 2800 | 25 | 0.08 | EEHAZT1J680B | 500 | | | 82 | 10.0 | 9.5 | 0.6 | G | 2800 | 25 | 0.08 | EEHAZT1J820B | 500 | <sup>\*1:</sup> Ripple current (100 kHz / +125 ℃) <sup>◆</sup> Please refer to the page of "Flow soldering profile" and "The taping dimensions". | Frequency co | Frequency correction factor for ripple current | | | | | | | | | | | |-----------------------|------------------------------------------------|---------------------|----------------------|-----------------------|------------------------|--|--|--|--|--|--| | Rated capacitance (C) | Frequency (f) | 100 Hz ≤ f < 200 Hz | 200 Hz ≤ f < 300 Hz | 300 Hz ≤ f < 500 Hz | 500 Hz ≦ f < 1 kHz | | | | | | | | C < 47 µF | Correction | 0.10 | 0.10 | 0.15 | 0.20 | | | | | | | | 47 μF ≦ C < 150 μF | factor | 0.15 | 0.20 | 0.25 | 0.30 | | | | | | | | 150 µF ≦ C | Tactor | 0.15 | 0.25 | 0.25 | 0.30 | | | | | | | | Rated capacitance (C) | Frequency (f) | 1 kHz ≦ f < 2 kHz | 2 kHz ≦ f < 3 kHz | 3 kHz ≦ f < 5 kHz | 5 kHz ≦ f < 10 kHz | | | | | | | | C < 47 µF | Correction | 0.30 | 0.40 | 0.45 | 0.50 | | | | | | | | 47 μF ≦ C < 150 μF | | 0.40 | 0.45 | 0.55 | 0.60 | | | | | | | | 150 µF ≦ C | factor | 0.45 | 0.50 | 0.60 | 0.65 | | | | | | | | Rated capacitance (C) | Frequency (f) | 10 kHz ≦ f < 15 kHz | 15 kHz ≦ f < 20 kHz | 20 kHz ≦ f < 30 kHz | 30 kHz ≦ f < 40 kHz | | | | | | | | $C < 47 \mu F$ | 1 / ( / | 0.60 | 0.65 | 0.70 | 0.75 | | | | | | | | 47 μF ≦ C < 150 μF | Correction | 0.70 | 0.75 | 0.80 | 0.80 | | | | | | | | 150 µF ≦ C | factor | 0.75 | 0.80 | 0.85 | 0.85 | | | | | | | | Rated capacitance (C) | Frequency (f) | 40 kHz ≦ f < 50 kHz | 50 kHz ≦ f < 100 kHz | 100 kHz ≦ f < 500 kHz | 500 kHz ≤ f < 1000 kHz | | | | | | | | $C < 47 \mu F$ | 1 / ( / | 0.80 | 0.85 | 1.00 | 1.05 | | | | | | | | 47 μF ≦ C < 150 μF | Correction | 0.85 | 0.90 | 1.00 | 1.00 | | | | | | | | 150 µF ≦ C | factor | 0.85 | 0.90 | 1.00 | 1.00 | | | | | | | <sup>\*2:</sup> ESR (100 kHz / +20 ℃) <sup>\*3:</sup> tan δ (120 Hz / +20 ℃) ## **Radial Lead Type** **ZS-A** series **Hybrid** #### **Features** - Endurance: 4000 h at 135 °C (Large capacitance / High ripple current / Low ESR) - Taping products for automatic insertion - AEC-Q200 compliant - RoHS compliant | Specifications | | | | | | | | |------------------------------------|----------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------|--|--|--|--| | Size code | G12 | | G16 | | | | | | Category temp. range | | +135 ℃ | | | | | | | Rated voltage range | 25 V to 63 V | | | | | | | | Nominal cap.range | 100 μF to 4 | 150 μF to 560 μF | | | | | | | Capacitance tolerance | | ±20 % (120 H | Hz / +20℃) | | | | | | DC leakage current | | $I \leq 0.01 \text{ CV } (\mu A)$ | | | | | | | Dissipation factor (tan $\delta$ ) | | Please see the attache | | | | | | | Surge voltage (V) | | Rated voltage $\times$ 1.25 | , | | | | | | | | | nt without exceeding the rated voltage. | | | | | | | Capacitance change | Within ±30% of the initi | | | | | | | Endurance 1 | Dissipation factor (tan $\delta$ ) | ≤ 200 % of the initial lin | | | | | | | | ESR | ≤ 200 % of the initial lin | nit | | | | | | | DC leakage current | Within the initial limit | | | | | | | | | | nt without exceeding the rated voltage. | | | | | | | Capacitance change Within ±30% of the initial value | | | | | | | | Endurance 2 | Dissipation factor (tan $\delta$ ) $\leq 200 \%$ of the initial limit | | | | | | | | | ESR | | | | | | | | | DC leakage current | Within the initial limit | | | | | | | | | | no voltage applied and then being | | | | | | Shelf life | stabilized at $+20$ °C, capacitors shall meet the limits specified in endurance. | | | | | | | | | (With voltage treatment) | | | | | | | | | $+85 \% \pm 2 \%$ , 85 % to 90 ° | | | | | | | | | Capacitance change | Within ±30% of the initi | | | | | | | Damp heat (Load) | Dissipation factor (tan $\delta$ ) | ≤ 200 % of the initial lin | | | | | | | | ESR | ≤ 200 % of the initial lin | nit | | | | | | | DC leakage current | Within the initial limit | | | | | | | | | n being stabilized at +20 | ℃, capacitors shall meet the | | | | | | Resistance to | following limits. | | | | | | | | soldering heat | Capacitance change | Within ±10% of the initi | al value | | | | | | 55.45.119.1.54 | Dissipation factor (tan $\delta$ ) | Within the initial limit | | | | | | | | DC leakage current | Within the initial limit | | | | | | #### **Marking** Example: 25 V 470 µF Marking color: BLACK Negative polarity marking (-) Capacitance (µF) Series identification Rated voltage code Lot number R.voltage code Unit: V 25 Е ٧ 35 Н 50 63 **ZS-A** series ## **Characteristics list** Endurance 1 : 125 $^{\circ}$ C 4000 h Endurance 2 : 135 $^{\circ}$ C 4000 h | | | ( | Case size<br>(mm) | 9 | | | Specif | ication | | | Min.packaging q'ty (pcs) | |----------------------------------------|-----|------|-------------------|------|------------------------|---------------------------------------|---------|---------------------------|---------------------|--------------|--------------------------| | Rated Capacitance voltage (±20 %) (µF) | | øD | L | L ød | Size<br>code | Ripple current <sup>*1</sup> (mA rms) | | ESR <sup>*2</sup><br>(mΩ) | tan δ <sup>*3</sup> | Part number | Taping | | | | | | | Endurance 1<br>(+125℃) | Endurance 2<br>(+135℃) | (11132) | | | | | | 25 | 470 | 10.0 | 11.7 | 0.8 | G12 | 3500 | 2500 | 14 | 0.14 | EEHAZS1E471B | 500 | | 25 | 560 | 10.0 | 15.7 | 0.8 | G16 | 4000 | 2900 | 11 | 0.14 | EEHAZS1E561B | 500 | | 35 | 330 | 10.0 | 11.7 | 0.8 | G12 | 3500 | 2500 | 14 | 0.12 | EEHAZS1V331B | 500 | | 33 | 470 | 10.0 | 15.7 | 0.8 | G16 | 4000 | 2900 | 11 | 0.12 | EEHAZS1V471B | 500 | | 50 | 150 | 10.0 | 11.7 | 0.8 | G12 | 3200 | 2250 | 17 | 0.10 | EEHAZS1H151B | 500 | | 30 | 220 | 10.0 | 15.7 | 0.8 | G16 | 3700 | 2600 | 13 | 0.10 | EEHAZS1H221B | 500 | | 63 | 100 | 10.0 | 11.7 | 0.8 | G12 | 3000 | 2100 | 19 | 0.08 | EEHAZS1J101B | 500 | | | 150 | 10.0 | 15.7 | 0.8 | G16 | 3500 | 2400 | 15 | 0.08 | EEHAZS1J151B | 500 | <sup>\*1:</sup> Ripple current (100 kHz $/ +125 \degree \text{C}$ or $+135 \degree \text{C}$ ) <sup>◆</sup> Please refer to the page of "Flow soldering profile" and "The taping dimensions". | Frequency correction factor for ripple current | | | | | | | | | | | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------|----------------------|-----------------------|------------------------|--|--|--|--|--| | Rated capacitance (C) | Frequency (f) | 100 Hz ≤ f < 200 Hz | 200 Hz ≤ f < 300 Hz | 300 Hz ≤ f < 500 Hz | 500 Hz ≦ f < 1 kHz | | | | | | | 100 μF ≦ C < 150 μF | Correction | 0.15 | 0.20 | 0.25 | 0.30 | | | | | | | 150 μF ≦ C | factor | 0.15 | 0.25 | 0.25 | 0.30 | | | | | | | Rated capacitance (C) Frequency (f) $1 \text{ kHz} \le f < 2 \text{ kHz}$ $2 \text{ kHz} \le f < 3 \text{ kHz}$ $3 \text{ kHz} \le f < 5 \text{ kHz}$ $5 \text{ kHz} \le f < 10 \text{ kHz}$ | | | | | | | | | | | | | . , , , | | | | | | | | | | | 100 μF ≤ C < 150 μF | Correction | 0.40 | 0.45 | 0.55 | 0.60 | | | | | | | 150 μF ≦ C | factor | 0.45 | 0.50 | 0.60 | 0.65 | | | | | | | | 1 | | | | | | | | | | | Rated capacitance (C) | Frequency (f) | 10 kHz ≦ f < 15 kHz | 15 kHz ≦ f < 20 kHz | 20 kHz ≤ f < 30 kHz | 30 kHz ≤ f < 40 kHz | | | | | | | $100 \mu$ F ≤ C < $150 \mu$ F | Correction | 0.70 | 0.75 | 0.80 | 0.80 | | | | | | | 150 μF ≦ C | factor | 0.75 | 0.80 | 0.85 | 0.85 | | | | | | | | | | | | | | | | | | | Rated capacitance (C) | Frequency (f) | 40 kHz ≤ f < 50 kHz | 50 kHz ≤ f < 100 kHz | 100 kHz ≤ f < 500 kHz | 500 kHz ≤ f < 1000 kHz | | | | | | | 100 μF ≤ C < 150 μF | Correction | 0.85 | 0.90 | 1.00 | 1.00 | | | | | | | 150 μF ≦ C | factor | 0.85 | 0.90 | 1.00 | 1.00 | | | | | | <sup>\*2:</sup> ESR (100 kHz / +20 ℃) <sup>\*3:</sup> tan δ (120 Hz / +20 °C) ## **Radial Lead Type** **ZSU-A** series # Tank Tank **Hybrid** #### **Features** - Endurance: 4000 h at 125 ℃ - Large capacitance compared with ZS series - Taping products for automatic insertion - AEC-Q200 compliant - RoHS compliant | • | | | | | | | | | |------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|--|--|--|--|--| | Specifications | | | | | | | | | | Size code | G12 | | G16 | | | | | | | Category temp. range | | –55 ℃ to - | +125 ℃ | | | | | | | Rated voltage range | | 25 V to | 63 V | | | | | | | Nominal cap.range | 120 μF to 6 | 580 μF | 180 μF to 1000 μF | | | | | | | Capacitance tolerance | | ±20 % (120 H | Hz / +20℃) | | | | | | | DC leakage current | | $I \leq 0.01 \text{ CV } (\mu A)$ | After 2 minutes | | | | | | | Dissipation factor (tan $\delta$ ) | | Please see the attache | | | | | | | | Surge voltage (V) | Rated voltage $\times$ 1.25 (15 $^{\circ}$ C to 35 $^{\circ}$ C) | | | | | | | | | | | | t without exceeding the rated voltage. | | | | | | | | Capacitance change | Within ±30% of the initi | | | | | | | | | Dissipation factor (tan $\delta$ ) | ≤ 200 % of the initial lin | | | | | | | | Endurance | ESR | ≤ 200 % of the initial lin | nit | | | | | | | Endurance | DC leakage current | Within the initial limit | | | | | | | | | ESR after endurance | Size code | | | | | | | | | (Ω / 100 kHz)(-40 °C) | G12 G16 | | | | | | | | | , , | 0.3 0.3 | | | | | | | | | After storage for 1000 hours at $+125~\%~\pm~2~\%$ with no voltage applied and then being | | | | | | | | | Shelf life | stabilized at +20 ℃, capaci | tors shall meet the limits | specified in endurance. | | | | | | | | (With voltage treatment) | | | | | | | | | | $+85 \% \pm 2 \%$ , 85 % to 90 ° | | | | | | | | | | Capacitance change | Within ±30% of the initi | | | | | | | | Damp heat (Load) | Dissipation factor (tan $\delta$ ) | ≤ 200 % of the initial lin | | | | | | | | | ESR | ≤ 200 % of the initial lin | nit | | | | | | | | DC leakage current | Within the initial limit | 00 | | | | | | | | | n being stabilized at +20 | ℃, capacitors shall meet the | | | | | | | Resistance to | following limits. | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | | | | | | soldering heat | Capacitance change | Within ±10% of the initi | al value | | | | | | | 23.23922 | Dissipation factor (tan δ) | Within the initial limit | | | | | | | | | DC leakage current | Within the initial limit | | | | | | | #### Marking 63 J **ZSU-A** series ## **Characteristics list** | | | ( | Case size<br>(mm) | 9 | Size<br>code | Sp | ecification | | Part number | Min.packaging q'ty (pcs) | |-------------------------|-----------------|------|-------------------|-----|--------------|---------------------------------------------|---------------------------|---------------------|--------------|--------------------------| | Rated<br>voltage<br>(V) | voltage (±20 %) | øD | L | ød | | Ripple<br>current <sup>*1</sup><br>(mA rms) | ESR <sup>*2</sup><br>(mΩ) | tan δ <sup>*3</sup> | | Taping | | 25 | 680 | 10.0 | 11.7 | 0.8 | G12 | 3500 | 14 | 0.14 | EEHAZSE681UB | 500 | | 25 | 1000 | 10.0 | 15.7 | 0.8 | G16 | 4000 | 11 | 0.14 | EEHAZSE102UB | 500 | | 35 | 470 | 10.0 | 11.7 | 0.8 | G12 | 3500 | 14 | 0.12 | EEHAZSV471UB | 500 | | 33 | 680 | 10.0 | 15.7 | 0.8 | G16 | 4000 | 11 | 0.12 | EEHAZSV681UB | 500 | | 50 | 180 | 10.0 | 11.7 | 0.8 | G12 | 3200 | 17 | 0.10 | EEHAZSH181UB | 500 | | 30 | 270 | 10.0 | 15.7 | 0.8 | G16 | 3700 | 13 | 0.10 | EEHAZSH271UB | 500 | | 63 | 120 | 10.0 | 11.7 | 0.8 | G12 | 3000 | 19 | 0.08 | EEHAZSJ121UB | 500 | | | 180 | 10.0 | 15.7 | 0.8 | G16 | 3500 | 15 | 0.08 | EEHAZSJ181UB | 500 | <sup>\*1:</sup> Ripple current (100 kHz / +125 ℃) <sup>◆</sup> Please refer to the page of "Flow soldering profile" and "The taping dimensions". | Frequency co | Frequency correction factor for ripple current | | | | | | | | | | | |-----------------------|------------------------------------------------|---------------------|----------------------|-----------------------|------------------------|--|--|--|--|--|--| | Rated capacitance (C) | Frequency (f) | 100 Hz ≦ f < 120 Hz | 120 Hz ≦ f < 200 Hz | 200 Hz ≦ f < 300 Hz | 300 Hz ≤ f < 500 Hz | | | | | | | | 120 μF ≦ C | Correction factor | 0.15 | 0.20 | 0.25 | 0.30 | | | | | | | | Rated capacitance (C) | Frequency (f) | 500 Hz ≦ f < 1 kHz | 1 kHz ≦ f < 2 kHz | 2 kHz ≦ f < 3 kHz | 3 kHz ≦ f < 5 kHz | | | | | | | | 120 µF ≦ C | Correction factor | 0.40 | 0.50 | 0.60 | 0.65 | | | | | | | | Rated capacitance (C) | Frequency (f) | 5 kHz ≦ f < 10 kHz | 10 kHz ≦ f < 15 kHz | 15 kHz ≦ f < 20 kHz | 20 kHz ≤ f < 30 kHz | | | | | | | | 120 μF ≦ C | Correction factor | 0.70 | 0.75 | 0.80 | 0.85 | | | | | | | | Rated capacitance (C) | Frequency (f) | 30 kHz ≤ f < 50 kHz | 50 kHz ≤ f < 100 kHz | 100 kHz ≦ f < 500 kHz | 500 kHz ≦ f < 1000 kHz | | | | | | | | 120 µF ≦ C | Correction factor | 0.85 | 0.90 | 1.00 | 1.00 | | | | | | | <sup>\*2:</sup> ESR (100 kHz / +20 ℃) <sup>\*3:</sup> tan δ (120 Hz / +20 °C) ## **Radial Lead Type** **ZE-A** series **Hybrid** #### **Features** - Endurance : 2000 h at 145 ℃ (High temperature / Long life) - Taping products for automatic insertion - AEC-Q200 compliant - RoHS compliant | Specifications | | | | | | | | | |------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|--|--| | Size code | F | G | | | | | | | | Category temp. range | -55 ℃ to +145 ℃ | | | | | | | | | Rated voltage range | | 25 V to 63 V | | | | | | | | Nominal cap.range | 33 µF to 2 | 20 μF 56 μF to 330 μF | | | | | | | | Capacitance tolerance | | ±20 % (120 Hz / +20℃) | | | | | | | | DC leakage current | | $I \leq 0.01 \text{ CV } (\mu A) \text{ After 2 minutes}$ | | | | | | | | Dissipation factor (tan $\delta$ ) | | Please see the attached characteristics list | | | | | | | | Surge voltage (V) | | Rated voltage $\times$ 1.25 (15 $^{\circ}$ C to 35 $^{\circ}$ C) | | | | | | | | | | ply the rated ripple current without exceeding the rated voltage. | | | | | | | | | Capacitance change | Within ±30% of the initial value | | | | | | | | Endurance 1 | Dissipation factor (tan $\delta$ ) | ≤ 200 % of the initial limit | | | | | | | | | ESR | ≤ 200 % of the initial limit | | | | | | | | | DC leakage current Within the initial limit | | | | | | | | | | $\pm 135~\% \pm 2~\%$ , 4000 h, apply the rated ripple current without exceeding the rated voltage. | | | | | | | | | | Capacitance change Within ±30% of the initial value | | | | | | | | | Endurance 2 | Dissipation factor (tan $\delta$ ) | ≤ 200 % of the initial limit | | | | | | | | | ESR | ≤ 300 % of the initial limit | | | | | | | | | DC leakage current Within the initial limit | | | | | | | | | | After storage for 1000 hours at +145 $^{\circ}$ C ± 2 $^{\circ}$ C with no voltage applied and then being | | | | | | | | | Shelf life | stabilized at $+20$ °C, capacitors shall meet the limits specified in endurance 1. | | | | | | | | | | (With voltage treatment) | | | | | | | | | | | %RH, 2000 h, rated voltage applied | | | | | | | | | Capacitance change | Within ±30% of the initial value | | | | | | | | Damp heat (Load) | Dissipation factor (tan $\delta$ ) | ≤ 200 % of the initial limit | | | | | | | | | ESR | ≤ 200 % of the initial limit | | | | | | | | | DC leakage current | Within the initial limit | | | | | | | | | | n being stabilized at +20 ℃, capacitors shall meet the | | | | | | | | Resistance to | following limits. | W21: 1400/ C1 : 2: 1 1 | | | | | | | | soldering heat | Capacitance change | Within ±10% of the initial value | | | | | | | | Soldering fiedt | Dissipation factor (tan $\delta$ ) | Within the initial limit | | | | | | | | | DC leakage current | Within the initial limit | | | | | | | #### **Marking** **ZE-A** series ## **Characteristics list** Endurance 1 : 145 $^{\circ}$ C 2000 h Endurance 2 : 135 $^{\circ}$ C 4000 h | voltage (±20 | | ( | Case size (mm) | е | | | Specif | cation | | | Min.packaging q'ty (pcs) | |--------------|--------------------------------|------|----------------|-----|--------------|----------------------------|-------------------------|---------------------------|-------------------|--------------|--------------------------| | | Capacitance<br>(±20 %)<br>(µF) | øD | L | ød | Size<br>code | Ripple current *1 (mA rms) | | ESR <sup>*2</sup><br>(mΩ) | tan $\delta^{*3}$ | Part number | Taping | | | | | | | | Endurance 1<br>(+145 ℃) | Endurance 2<br>(+135 ℃) | (11152) | | | | | 25 | 220 | 8.0 | 9.5 | 0.6 | F | 700 | 1600 | 27 | 0.14 | EEHAZE1E221B | 1000 | | 25 | 330 | 10.0 | 9.5 | 0.6 | G | 900 | 2000 | 20 | 0.14 | EEHAZE1E331B | 500 | | 35 | 150 | 8.0 | 9.5 | 0.6 | F | 700 | 1600 | 27 | 0.12 | EEHAZE1V151B | 1000 | | 33 | 270 | 10.0 | 9.5 | 0.6 | G | 900 | 2000 | 20 | 0.12 | EEHAZE1V271B | 500 | | 50 | 68 | 8.0 | 9.5 | 0.6 | F | 600 | 1250 | 30 | 0.10 | EEHAZE1H680B | 1000 | | 50 | 100 | 10.0 | 9.5 | 0.6 | G | 800 | 1600 | 28 | 0.10 | EEHAZE1H101B | 500 | | | 33 | 8.0 | 9.5 | 0.6 | F | 600 | 1100 | 40 | 0.08 | EEHAZE1J330B | 1000 | | 63 | 56 | 10.0 | 9.5 | 0.6 | G | 800 | 1400 | 30 | 0.08 | EEHAZE1J560B | 500 | | | 82 | 10.0 | 9.5 | 0.6 | G | 800 | 1400 | 30 | 0.08 | EEHAZE1J820B | 500 | <sup>\*1:</sup> Ripple current (100 kHz $/ +145 \,^{\circ}$ C or $+135 \,^{\circ}$ C) <sup>♦</sup> Please refer to the page of "Flow soldering profile" and "The taping dimensions". | Frequency correction factor for ripple current | | | | | | | | | | | |------------------------------------------------|-------------------|---------------------|----------------------|-----------------------|------------------------|--|--|--|--|--| | Rated capacitance (C) | Frequency (f) | 100 Hz ≤ f < 200 Hz | 200 Hz ≦ f < 300 Hz | 300 Hz ≦ f < 500 Hz | 500 Hz ≦ f < 1 kHz | | | | | | | C < 47 µF | C | 0.10 | 0.10 | 0.15 | 0.20 | | | | | | | 47 μF ≦ C < 150 μF | Correction factor | 0.15 | 0.20 | 0.25 | 0.30 | | | | | | | 150 μF ≦ C | lactor | 0.15 | 0.25 | 0.25 | 0.30 | | | | | | | Rated capacitance (C) | Frequency (f) | 1 kHz ≦ f < 2 kHz | 2 kHz ≦ f < 3 kHz | 3 kHz ≦ f < 5 kHz | 5 kHz ≦ f < 10 kHz | | | | | | | C < 47 µF | C | 0.30 | 0.40 | 0.45 | 0.50 | | | | | | | 47 μF ≦ C < 150 μF | Correction factor | 0.40 | 0.45 | 0.55 | 0.60 | | | | | | | 150 μF ≦ C | ractor | 0.45 | 0.50 | 0.60 | 0.65 | | | | | | | Rated capacitance (C) | Frequency (f) | 10 kHz ≦ f < 15 kHz | 15 kHz ≦ f < 20 kHz | 20 kHz ≦ f < 30 kHz | 30 kHz ≦ f < 40 kHz | | | | | | | C < 47 µF | Compostion | 0.60 | 0.65 | 0.70 | 0.75 | | | | | | | 47 μF ≦ C < 150 μF | Correction factor | 0.70 | 0.75 | 0.80 | 0.80 | | | | | | | 150 μF ≦ C | ractor | 0.75 | 0.80 | 0.85 | 0.85 | | | | | | | Rated capacitance (C) | Frequency (f) | 40 kHz ≦ f < 50 kHz | 50 kHz ≦ f < 100 kHz | 100 kHz ≦ f < 500 kHz | 500 kHz ≦ f < 1000 kHz | | | | | | | $C < 47 \mu F$ | . , , , | 0.80 | 0.85 | 1.00 | 1.05 | | | | | | | 47 μF ≦ C < 150 μF | Correction | 0.85 | 0.90 | 1.00 | 1.00 | | | | | | | 150 μF ≦ C | factor | 0.85 | 0.90 | 1.00 | 1.00 | | | | | | ## After endurance ESR (100 kHz, -40 $^{\circ}$ C) | Size code | F (ø8 x L9.5) | G (ø10 x L9.5) | |-----------|---------------|----------------| | ESR (Ω) | 0.4 | 0.3 | <sup>\*2:</sup> ESR (100 kHz / +20 ℃) <sup>\*3:</sup> tan δ (120 Hz / +20 °C) ## **Radial Lead Type** **ZF-A** series #### **Features** - Endurance : 1000 h at 150 ℃ (High temperature) - High temperature compared with ZC series - High-withstand voltage (to 63 V), Low LC (0.01 CV) - Equivalent to conductive polymer type Aluminum Electrolytic Capacitor (There are little characteristics change by temperature and frequency) - Compatible with taping products for automatic insertion - AEC-O200 compliant - RoHS compliant | Specifications | | | | | | | | |------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------|-----------------------------|--|--|--| | Size code | F | | | G | | | | | Category temp. range | | -55 | ℃ to +150 ℃ | 0 +150 ℃ | | | | | Rated voltage range | | 2 | .5 V to 63 V | | | | | | Nominal cap.range | 33 μF to 1 | 50 μF | | 56 μF to 270 μF | | | | | Capacitance tolerance | | | (120 Hz / +20℃) | | | | | | DC leakage current | | | / (µA) After 2 mini | | | | | | Dissipation factor (tan $\delta$ ) | | | attached characteri | | | | | | Surge voltage (V) | | | × 1.25 (15 ℃ to | | | | | | | +150 °C ± 2 °C, 1000 h, ap | ply the rated ripple | current without ex | xceeding the rated voltage. | | | | | | Capacitance change | Within ±30% of t | | | | | | | | Dissipation factor (tan $\delta$ ) | ≤ 200 % of the ir | | | | | | | Endurance | ESR | ≤ 200 % of the initial limit | | | | | | | | DC leakage current | rent Within the initial limit | | | | | | | | ESR after endurance | Size | | | | | | | | (Ω / 100 kHz)(-40 °C) | F | G | | | | | | | | 0.4 | 0.3 | | | | | | | After storage for 1000 hours at +150 $^{\circ}$ C ± 2 $^{\circ}$ C with no voltage applied and then being | | | | | | | | Shelf life | stabilized at $+20 ^{\circ}$ C, capacitors shall meet the limits specified in endurance. | | | | | | | | | (With voltage treatment) | | | | | | | | | $+85~\mathrm{C}~\pm~2~\mathrm{C}$ , 85 % to 90 %RH, 2000 h, rated voltage applied | | | | | | | | | Capacitance change | Within ±30% of t | | | | | | | Damp heat (Load) | Dissipation factor (tan δ) | ≤ 200 % of the ir | | | | | | | | ESR | ≤ 200 % of the ir | | limit | | | | | | DC leakage current | Within the initial I | | | | | | | | After flow soldering and the | n being stabilized a | it +20 °C, capacito | rs shall meet the | | | | | Resistance to | following limits. | T | | | | | | | soldering heat | Capacitance change | Within ±10% of t | | | | | | | Soluting neat | Dissipation factor (tan $\delta$ ) | Within the initial I | | | | | | | | DC leakage current | Within the initial I | Within the initial limit | | | | | #### **Marking** Example : 25 V 150 μF Marking color : BLACK Negative polarity marking (-) Capacitance ( $\mu F$ ) E ZF Series identification Lot number Rated voltage code **ZF-A** series ## **Characteristics list** | | | Case size (mm) | | | | Specification | | | Part n | Min.packaging<br>q'ty (pcs) | | | |-------------------------|--------------------------------|----------------|-----|-----|--------------|---------------------------------|---------------------------|-------------------|--------------|-----------------------------|--------|------| | Rated<br>voltage<br>(V) | Capacitance<br>(±20 %)<br>(µF) | øD | L | ød | Size<br>code | Ripple<br>current*1<br>(mA rms) | ESR <sup>*2</sup><br>(mΩ) | tan $\delta^{*3}$ | Taping type | Bulk type | Taping | Bulk | | 25 | 150 | 8.0 | 9.5 | 0.6 | F | 800 | 27 | 0.14 | EEHAZF1E151B | EEHAZF1E151 | 1000 | 200 | | 23 | 270 | 10.0 | 9.5 | 0.6 | G | 1000 | 20 | 0.14 | EEHAZF1E271B | EEHAZF1E271 | 500 | 200 | | 35 | 100 | 8.0 | 9.5 | 0.6 | F | 770 | 30 | 0.12 | EEHAZF1V101B | EEHAZF1V101 | 1000 | 200 | | 33 | 150 | 10.0 | 9.5 | 0.6 | G | 950 | 23 | 0.12 | EEHAZF1V151B | EEHAZF1V151 | 500 | 200 | | 50 | 56 | 8.0 | 9.5 | 0.6 | F | 700 | 35 | 0.10 | EEHAZF1H560B | EEHAZF1H560 | 1000 | 200 | | 50 | 100 | 10.0 | 9.5 | 0.6 | G | 900 | 28 | 0.10 | EEHAZF1H101B | EEHAZF1H101 | 500 | 200 | | 63 | 33 | 8.0 | 9.5 | 0.6 | F | 650 | 40 | 0.08 | EEHAZF1J330B | EEHAZF1J330 | 1000 | 200 | | | 56 | 10.0 | 9.5 | 0.6 | G | 840 | 30 | 0.08 | EEHAZF1J560B | EEHAZF1J560 | 500 | 200 | <sup>\*1:</sup> Ripple current (100 kHz / +150 ℃) <sup>◆</sup> Please refer to the page of "Flow soldering profile" and "The taping dimensions". | Frequency co | orrection | factor for ripp | le current | | | | | | | |-----------------------|-------------------|---------------------------------------|----------------------|-----------------------|---------------------|--|--|--|--| | Rated capacitance (C) | Frequency (f) | 100 Hz ≤ f < 200 Hz | 200 Hz ≦ f < 300 Hz | 300 Hz ≦ f < 500 Hz | 500 Hz ≦ f < 1 kHz | | | | | | C < 47 µF | C | 0.10 | 0.10 | 0.15 | 0.20 | | | | | | 47 μF ≦ C < 150 μF | Correction factor | 0.15 | 0.20 | 0.25 | 0.30 | | | | | | 150 µF ≦ C | lactor | 0.15 | 0.25 | 0.25 | 0.30 | | | | | | | | | | | | | | | | | Rated capacitance (C) | Frequency (f) | $1 \text{ kHz} \le f < 2 \text{ kHz}$ | 2 kHz ≦ f < 3 kHz | 3 kHz ≦ f < 5 kHz | 5 kHz ≦ f < 10 kHz | | | | | | C < 47 µF | | 0.30 | 0.40 | 0.45 | 0.50 | | | | | | 47 μF ≦ C < 150 μF | Correction factor | 0.40 | 0.45 | 0.55 | 0.60 | | | | | | 150 μF ≦ C | lactor | 0.45 | 0.50 | 0.60 | 0.65 | | | | | | | | | | | | | | | | | Rated capacitance (C) | Frequency (f) | 10 kHz ≦ f < 15 kHz | 15 kHz ≦ f < 20 kHz | 20 kHz ≤ f < 30 kHz | 30 kHz ≤ f < 40 kHz | | | | | | C < 47 µF | | 0.60 | 0.65 | 0.70 | 0.75 | | | | | | 47 μF ≦ C < 150 μF | Correction factor | 0.70 | 0.75 | 0.80 | 0.80 | | | | | | 150 μF ≦ C | lactor | 0.75 | 0.80 | 0.85 | 0.85 | | | | | | | | | | | | | | | | | Rated capacitance (C) | Frequency (f) | 40 kHz ≤ f < 50 kHz | 50 kHz ≤ f < 100 kHz | 100 kHz ≦ f < 500 kHz | 500 kHz ≦ f | | | | | | C < 47 µF | C | 0.80 | 0.85 | 1.00 | 1.05 | | | | | | 47 μF ≦ C < 150 μF | Correction factor | 0.85 | 0.90 | 1.00 | 1.00 | | | | | | 150 μF ≦ C | luctoi | 0.85 | 0.90 | 1.00 | 1.00 | | | | | <sup>\*2:</sup> ESR (100 kHz / +20 ℃) <sup>\*3:</sup> tan δ (120 Hz / +20 ℃) ## **Safty Precautions** When using our products, no matter what sort of equipment they might be used for, be sure to confirm the applications and environmental conditions with our specifications in advance. Panasonic Corporation Device Solutions Business Division Industrial Company 1006 Kadoma, Kadoma City, Osaka 571-8506 Japan ## **Mouser Electronics** **Authorized Distributor** Click to View Pricing, Inventory, Delivery & Lifecycle Information: #### Panasonic: EEH-ZF1E151P EEH-ZF1E151V EEH-ZF1E271P EEH-ZF1E271V EEH-ZF1H101P EEH-ZF1H101V EEH-ZF1V101P EEH-ZF1V101V EEH-ZF1V151P EEH-ZF1V151V EEH-ZF1H560P EEH-ZF1H560V EEH-ZF1J330P EEH-ZF1J330V EEH-ZF1J560P EEH-ZF1J560V EEH-AZF1E151B EEH-AZF1E271B EEH-AZF1H101B EEH-AZF1H560B EEH-AZF1J330B EEH-AZF1J560B EEH-AZF1V101B EEH-AZF1V151B EEH-AZA1E151B EEH-AZA1E221B EEH-AZA1E331B EEH-AZA1H101B EEH-AZA1H470B EEH-AZA1H680B EEH-AZA1J330B EEH-AZA1J470B EEH-AZA1J560B EEH-AZA1J680B EEH-AZA1J820B EEH-AZA1K220B EEH-AZA1K330B EEH-AZA1V101B EEH-AZA1V151B EEH-AZA1V221B EEH-AZA1V271B EEH-AZC1E151B EEH-AZC1E221B EEH-AZC1E331B EEH-AZC1H101B EEH-AZC1H121B EEH-AZC1H470B EEH-AZC1H680B EEH-AZC1J330B EEH-AZC1J470B EEH-AZC1J560B EEH-AZC1J680B EEH-AZC1J820B EEH-AZC1K220B EEH-AZC1K330B EEH-AZC1K470B EEH-AZC1V101B EEH-AZC1V151B EEH-AZC1V221B EEH-AZC1V271B EEH-AZE1E221B EEH-AZE1E331B EEH-AZE1H101B EEH-AZE1H680B EEH-AZE1J330B EEH-AZE1J560B EEH-AZE1J820B EEH-AZE1V151B EEH-AZE1V271B EEH-AZK1E271B EEH-AZK1E471B EEH-AZK1V181B EEH-AZK1V331B EEH-AZKE331UB EEH-AZKE561UB EEH-AZKV221UB EEH-AZKV391UB EEH-AZS1E471B EEH-AZS1E561B EEH-AZS1H151B EEH-AZS1H221B EEH-AZS1J101B EEH-AZS1J151B EEH-AZS1V331B EEH-AZS1V471B EEH-AZT1E221B EEH-AZT1E331B EEH-AZT1H101B EEH-AZT1H121B EEH-AZT1H680B EEH-AZT1J330B EEH-AZT1J470B EEH-AZT1J560B EEH-AZT1J680B EEH-AZT1J820B EEH-AZT1V151B EEH-AZT1V271B EEH-ZU1V471V EEH-ZU1V331P EEH-ZU1J151P