MOSFET – Dual, N-Channel, Small Signal, XLLGA6, 0.65mm x 0.90mm x 0.4mm 20 V, 200 mA

NTND31015NZ

Features

- Dual N-Channel MOSFET
- Offers a Low R_{DS(ON)} Solution in the Ultra Small 0.65 mm x 0.90 mm Package
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

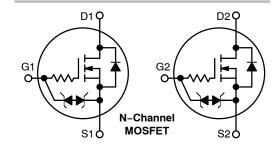
Applications

- Small Signal Load Switch
- Analog Switch
- High Speed Interfacing
- Optimized for Power Management in Ultra Portable Products

MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise specified)

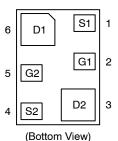
Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	20	V
Gate-to-Source Voltage			V _{GS}	±8	V
Continuous Drain	Steady State	T _A = 25°C	I _D	200	mA
Current (Note 1)	State	T _A = 85°C		140	
	t ≤ 5 s			220	
Power Dissipation (Note 1)	Steady State	T _A = 25°C	P _D	125	mW
	t ≤ 5 s			166	
Pulsed Drain Current $t_p = 10 \mu s$			I _{DM}	800	mA
Operating Junction and Storage Temperature			T _J , T _{STG}	-55 to 150	°C
Source Current (Body Diode) (Note 2)			Is	200	mA
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- Surface-mounted on FR4 board using the minimum recommended pad size, 1 oz Cu.
- 2. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%

ON Semiconductor®

www.onsemi.com


V _{(BR)DSS}	R _{DS(ON)} MAX	I _D Max
20 V	1.5 Ω @ 4.5 V	
	2.0 Ω @ 2.5 V	200 mA
	3.0 Ω @ 1.8 V	200 IIIA
	4.5 Ω @ 1.5 V	

XLLGA6 Case 713AC

PINOUT DIAGRAM

(Dollotti view)

MARKING DIAGRAM

D = Specific Device Code

M = Date Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

NTND31015NZ

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Мах	Unit	
Junction-to-Ambient - Steady State (Note 3)	Б	998	0000	
Junction-to-Ambient - t ≤ 5 s (Note 3)	$R_{ hetaJA}$	751	°C/W	

^{3.} Surface-mounted on FR4 board using the minimum recommended pad size, 1 oz Cu.

ELECTRICAL CHARACTERISTICS (T₁ = 25°C unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	•			•			
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		20			V
Zero Gate Voltage Drain Current		V _{GS} = 0 V, V _{DS} = 5 V	T _J = 25°C			50	nA
	I _{DSS}		T _J = 85°C			200	- 4
		V _{GS} = 0 V, V _{DS} = 16 V	T _J = 25°C			100	nA
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 5.0 \text{ V}$				±100	nA
ON CHARACTERISTICS (Note 4)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 2$	250 μΑ	0.4		1.0	V
Drain-to-Source On Resistance		$V_{GS} = 4.5 \text{ V}, I_D = 100 \text{ mA}$			0.8	1.5	Ω
		$V_{GS} = 2.5 \text{ V}, I_D = 50 \text{ mA}$			1.1	2.0	
	R _{DS(ON)}	V _{GS} = 1.8 V, I _D = 20 mA			1.4	3.0	
		V _{GS} = 1.5 V, I _D = 10 mA			1.8	4.5	
Forward Transconductance	9FS	V _{DS} = 5.0 V, I _D = 125 mA			0.48		S
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V, I _S = 10 mA			0.6	1.0	>
CAPACITANCES							
Input Capacitance	C _{ISS}	f = 1 MHz, V _{GS} = 0 V V _{DS} = 15 V			12.3		pF
Output Capacitance	C _{OSS}				3.4		
Reverse Transfer Capacitance	C _{RSS}				2.5		
SWITCHING CHARACTERISTICS, $V_{GS} =$	4.5 V (Note 4)						
Turn-On Delay Time	t _{d(ON)}	V_{GS} = 4.5 V, V_{DD} = 10 V, I_{D} = 200 mA, R_{G} = 3 Ω			16.5		- ns
Rise Time	t _r				25.5		
Turn-Off Delay Time	t _{d(OFF)}				142		
Fall Time	t _f				80		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ORDERING INFORMATION

Device	Package	Shipping [†]
NTND31015NZTAG	XLLGA6 (Pb-Free)	8000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{4.} Switching characteristics are independent of operating junction temperatures.

NTND31015NZ

TYPICAL CHARACTERISTICS

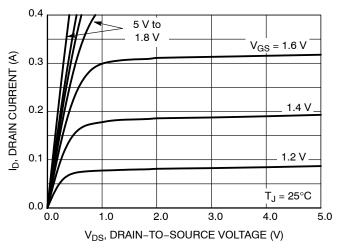


Figure 1. On-Region Characteristics

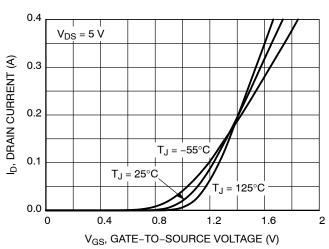


Figure 2. Transfer Characteristics

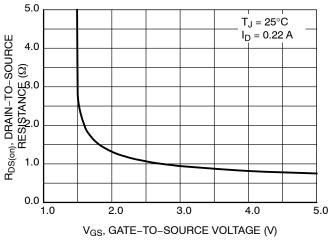


Figure 3. On-Resistance vs. Gate-to-Source Voltage

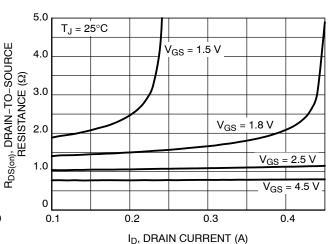


Figure 4. On-Resistance vs. Drain Current and Gate Voltage

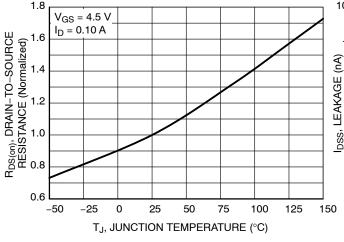


Figure 5. On–Resistance Variation with Temperature

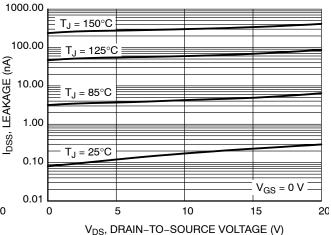
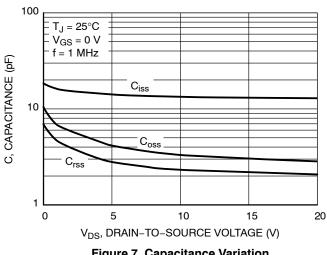
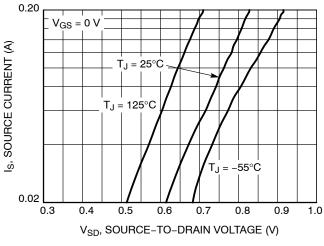



Figure 6. Drain-to-Source Leakage Current vs. Voltage

NTND31015NZ


TYPICAL CHARACTERISTICS

 $V_{DS} = 10 V$ $I_D = 0.2 \text{ A}, V_{GS} = 4.5 \text{ V}$ t_{d(off)} 100 t, TIME (ns) t_{r} t_{d(on)} 10 10 100 R_G , GATE RESISTANCE (Ω)

Figure 7. Capacitance Variation

Figure 8. Resistive Switching Time Variation vs. Gate Resistance

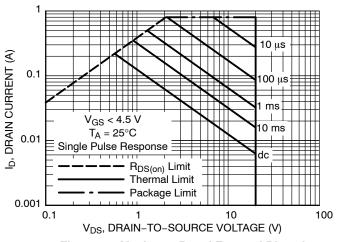
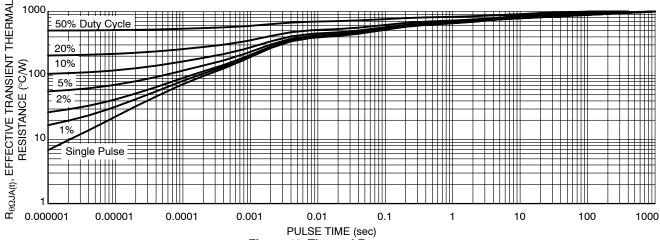
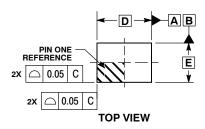
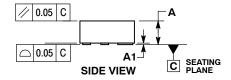
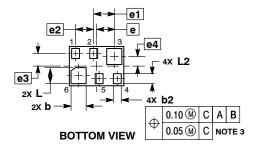



Figure 9. Diode Forward Voltage vs. Current

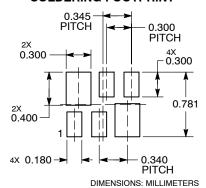
Figure 10. Maximum Rated Forward Biased Safe Operating Area







XLLGA6 0.90x0.65 CASE 713AC ISSUE O


DATE 19 JUN 2014

RECOMMENDED SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: MILLIMETERS.

 3. POSITIONAL TOERANCE APPLIES TO ALL
- SIX LEADS.

	MILLIMETERS				
DIM	MIN	MAX			
Α	0.340	0.440			
A1	0.000	0.050			
b	0.200	0.300			
b2	0.080	0.180			
D	0.900	0.900 BSC			
E	0.650 BSC				
е	0.295 BSC				
e1	0.340 BSC				
e2	0.300 BSC				
е3	0.208 BSC				
e4	0.158 BSC				
L	0.215	0.315			
L2	0.115	0.215			

GENERIC MARKING DIAGRAM*

= Specific Device Code

Μ = Date Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98AON86873F	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	XLLGA6 0.90X0.65		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves brisefin and of 160 m are trademarked so defined values of services and of the confined values and of the values of the confined values and of the values of the confined values and of the values of the special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales